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Fundamental theorem of arithmetic

Theorem 1. [Fundamental theorem of arithmetic] integer n ≥ 2 can be factored

uniquely into products of primes, i.e., exist distinct primes, p1, . . . , pk, and e1, . . . , ek ∈
N such that

n = p
e1
1 p

e2
2 · · · pekk

Searching for Universal Truths - Math Stories - Fundamental Theorems 5



Sunghee Yun August 4, 2025

Fundamental theorem of algebra

Theorem 2. [Fundamental theorem of algebra] every non-constant single-variable

polynomial with complex coefficients has at least one complex root, or equivalently, (the

field of complex numbers) is algebraically closed, or equivalently, every non-zero, single-

variable, degree n polynomial with complex coefficients has, counted with multiplicity,

exactly n complex roots.

• the fundamental theorem of algebra, also called d’Alembert’s theorem or the

d’Alembert–Gauss theorem

• despite its name, not fundamental for modern algebra; named when algebra was

synonymous with the theory of equations
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Fundamental theorem of calculus

Theorem 3. [Fundamental theorem of calculus]

• first fundamental theorem of calculus - for continuous real-valued function f : [a, b] →
R, function F : [a, b] → R defined by F (x) =

∫ x
a
f(t)dt is uniformly continuous on

[a, b] and differentiable on open interval (a, b) and

F
′
(x) = f(x)

for all x ∈ (a, b), hence F is antiderivative of f

• second fundamental theorem of calculus or Newton-Leibniz theorem - for real-valued

function f : [a, b] → R and continuous function F : [a, b] → R which is antiderivative

of f in (a, b), i.e. F ′(x) = f(x), if f is Riemann integrable on [a, b], then∫ b

a

f(x)dx = F (b) − F (a)
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Fundamental theorem of calculus for line integrals

Theorem 4. [gradient theorem] line integral through a gradient field can be evaluated

by evaluating the original scalar field at the endpoints of the curve, i.e., if φ : X → R is

differentiable function and γ is curve in X ⊂ R which starts at point p ∈ Rn and ends

at point q ∈ Rn, then

∫
γ

∇φ(x)Tdx = φ(q) − φ(p)

• generalization of the second fundamental theorem of calculus of Fundamental theorem

of calculus
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Fundamental theorem of cyclic groups

Theorem 5. [Fundamental theomre of cyclic groups] every subgroup of a cyclic

group is cyclic; moreover, for finite cyclic group of order n, every subgroup’s order is

a divisor of n, and exists exactly one subgroup for each divisor.
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Fundamental theorem of equivalence relations

Theorem 6. [Fundamental theorem of equivalence relations] equivalence relation∼
on set X partitions X; conversely, corresponding to any partition of X, exists equivalence

relation ∼ on X
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Fundamental theorem of finite abelian groups

Theorem 7. [Fundamental theorem of finite abelian groups] every finite abelian

group can be expressed as direct sum of cyclic subgroups of prime-power order, i.e.,

any finite abelian group G is isomorphic to direct sum of form

u⊕
i=1

(Z/kiZ)

in either of the following canonical ways

• numbers k1, . . . , ku are powers of (not necessarily distinct) primes

• k1 divides k2, which divides k3, and so on up to ku

• also known as basis theorem for finite abelian groups
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Fundamental theorem of finitely generated abelian groups

• Fundamental theorem of finitely generated abelian groups generalizes Fundamental

theorem of finite abelian groups in two ways

Theorem 8. [Fundamental theorem of finitely generated abelian groups]

• primary decomposition - every finitely generated abelian group is isomorphic to a direct

sum of primary cyclic groups and infinite cyclic groups, i.e., every finitely generated

abelian group G is isomorphic to group of form

G = Zn ⊕ (Z/q1Z) ⊕ · · · ⊕ (Z/qtZ)

where n ≥ 0 is rank, and numbers q1, . . . , qt are powers of (not necessarily distinct)

prime numbers; in particular, G is finite if and only if n = 0, values of n, q1, . . . , qt
are (up to rearranging indices) uniquely determined by G, i.e., exists one and only one

way to represent G as such decomposition
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• invariant factor decomposition - can also write any finitely generated abelian group G

as direct sum of form

G = Zn ⊕ (Z/k1Z) ⊕ · · · ⊕ (Z/kuZ)

where k1 divides k2, which divides k3 and so on up to ku; again, rank n and invariant

factors k1, . . . , ku are uniquely determined by G (here with a unique order); rank and

sequence of invariant factors determine group up to isomorphism
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Fundamental theorem for Galois theory

Theorem 9. [Fundamental theorem for Galois theory] for finite Galois extension,

K/k

- map H 7→ KH induces isomorphism between set of subgroups of G(K/k) & set of

intermediate fields

- subgroup, H, of G(K/k), is normal if and only if KH/k is Galois

- for normal subgroup, H, σ 7→ σ|KH induces isomorphism between G(K/k)/H

and G(KH/k)
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Fundamental theorem on homeomorphisms

Theorem 10. [Fundamental theorem on homeomorphisms] for two groupsG andH

and group homeomorphism f : G → H, normal subgroup N ⊂ G, natural surjective

homeomorphism φ : G → G/N if N is subset of Ker f , exists unique homeomorphism

h : G/N → H such that

f = h ◦ φ
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Fundamental theorem of ideal theory in number fields

Theorem 11. [Fundamental theorem of ideal theory in number fields] every nonzero

proper ideal in ring of integers of number field admits unique factorization into product of

nonzero prime ideals; in other words, every ring of integers of number field is Dedekind

domain
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Fundamental theorem of linear algebra

Theorem 12. [rank-nullity theorem] number of columns of matrix M is sume of rank

of M and nullity of M , or equivalently, dimension of domain of linear transformation f is

sum of rank of f (dimension of image of f) and nullity of f (dimension of kernel of f)
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Fundamental theorem of linear programming

Theorem 13. [Fundamental theorem of linear programming] for linear program

minimal cTx

subject to Ax ≤ b

if P = {x ∈ Rn|Ax ≤ b} is bounded polyhedron (hence polytope) and x∗ is optimal

solution, then x∗ is either extreme point (i.e., vertex) of P or lies on some face of P
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Fundamental theorem of symmetric polynomials

Theorem 14. [Fundamental theorem of symmetric polynomials] for every commutative

ring A, denote ring of symmetric polynomials in variables X1, . . . , Xn with coefficients

in A by A[X1, . . . , Xn]
Sn, which is polynomial ringt in n elementary symmetric

polynomials ek(X1, . . . , Xn) for k = 1, . . . , n, then every symmetric polynomial

P (X1, . . . , Xn) ∈ A[X1, . . . , Xn]
Sn has unique representation

P (X1, . . . , Xn) = Q(e1(X1, . . . , Xn), . . . , en(X1, . . . , Xn))

for some polynomialsQ ∈ A[Y1, . . . , Yn], or equivalently, ring homeomorphism that sends

Yk to ek(X1, . . . , Xn) for k = 1, . . . , n defines an isomorphism betweenA[Y1, . . . , Yn]

and A[X1, . . . , Xn]
Sn
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Dualities

• duality

– “very pervasive and important concept in (modern) mathematics”

– “important general theme having manifestations in almost every area of mathematics”

• dualities appear in many places in mathematics, e.g.

– dual of normed space is space of bounded linear functionals on the space (page 358)

– dual cones and dual norms are defined (Definition 163 & Definition 164)

– can define dual generalized inequalities using dual cones (Proposition 36)

– can find necessary and sufficient conditions for K-convexity using dual generalized

inequalities (Proposition 41)

– duality can be observed even in fundamental theorem for Galois theory, i.e.,

G(K/E) ↔ E & H ↔ KH (Theorem 50)

– exist dualities in continuous / discrete functions in time domain and continuous /

discrete functions in frequency domain, i.e., as in Fourier Transformation
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• However, never fascinated more than duality appearing in optimization, e.g.,

– properties such as weak duality (Definition 194) and strong duality (Definition 196)

– dual problem provides some bound for the optimal value of the original problem,

hence certificate of suboptimality!

– constraint qualifications such as Slater’s condition (Theorem 84) guarantee strong

duality!
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Notations

• sets of numbers

– N - set of natural numbers

– Z - set of integers

– Z+ - set of nonnegative integers

– Q - set of rational numbers

– R - set of real numbers

– R+ - set of nonnegative real numbers

– R++ - set of positive real numbers

– C - set of complex numbers

• sequences ⟨xi⟩ and the like

– finite ⟨xi⟩ni=1, infinite ⟨xi⟩∞i=1 - use ⟨xi⟩ whenever unambiguously understood

– similarly for other operations, e.g.,
∑
xi,
∏
xi, ∪Ai, ∩Ai,×Ai

– similarly for integrals, e.g.,
∫
f for

∫∞
−∞ f

• sets

– Ã - complement of A
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– A ∼ B - A ∩ B̃
– A∆B - (A ∩ B̃) ∪ (Ã ∩ B)

– P(A) - set of all subsets of A

• sets in metric vector spaces

– A - closure of set A

– A◦ - interior of set A

– relintA - relative interior of set A

– bdA - boundary of set A

• set algebra

– σ(A) - σ-algebra generated by A, i.e., smallest σ-algebra containing A
• norms in Rn

– ∥x∥p (p ≥ 1) - p-norm of x ∈ Rn, i.e., (|x1|p + · · · + |xn|p)1/p
– e.g., ∥x∥2 - Euclidean norm

• matrices and vectors

– ai - i-th entry of vector a

– Aij - entry of matrix A at position (i, j), i.e., entry in i-th row and j-th column

– Tr(A) - trace of A ∈ Rn×n, i.e., A1,1 + · · · + An,n
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• symmetric, positive definite, and positive semi-definite matrices

– Sn ⊂ Rn×n - set of symmetric matrices

– Sn+ ⊂ Sn - set of positive semi-definite matrices; A ⪰ 0 ⇔ A ∈ Sn+
– Sn++ ⊂ Sn - set of positive definite matrices; A ≻ 0 ⇔ A ∈ Sn++

• sometimes, use Python script-like notations (with serious abuse of mathematical

notations)

– use f : R → R as if it were f : Rn → Rn, e.g.,

exp(x) = (exp(x1), . . . , exp(xn)) for x ∈ Rn

and

log(x) = (log(x1), . . . , log(xn)) for x ∈ Rn++

which corresponds to Python code numpy.exp(x) or numpy.log(x) where x is

instance of numpy.ndarray, i.e., numpy array

– use
∑
x to mean 1Tx for x ∈ Rn, i.e.∑

x = x1 + · · · + xn

which corresponds to Python code x.sum() where x is numpy array
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– use x/y for x, y ∈ Rn to mean[
x1/y1 · · · xn/yn

]T
which corresponds to Python code x / y where x and y are 1-d numpy arrays

– use X/Y for X,Y ∈ Rm×n to mean
X1,1/Y1,1 X1,2/Y1,2 · · · X1,n/Y1,n

X2,1/Y2,1 X2,2/Y2,2 · · · X2,n/Y2,n
... ... . . . ...

Xm,1/Ym,1 Xm,2/Ym,2 · · · Xm,n/Ym,n


which corresponds to Python code X / Y where X and Y are 2-d numpy arrays
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Some definitions

Definition 1. [infinitely often - i.o.] statement Pn, said to happen infinitely often or

i.o. if

(∀N ∈ N) (∃n > N) (Pn)

Definition 2. [almost everywhere - a.e.] statement P (x), said to happen almost

everywhere or a.e. or almost surely or a.s. (depending on context) associated with

measure space (X,B, µ) if

µ{x|P (x)} = 1

or equivalently

µ{x| ∼ P (x)} = 0
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Some conventions

• (for some subjects) use following conventions

– 0 · ∞ = ∞ · 0 = 0

– (∀x ∈ R++)(x · ∞ = ∞ · x = ∞)

– ∞ · ∞ = ∞
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Jensen’s inequality

• strictly convex function: for any x ̸= y and 0 < α < 1 (Definition 165)

αf(x) + (1 − α)f(y) > f(αx+ (1 − α)y)

• convex function: for any x, y and 0 < α < 1 (Definition 165)

αf(x) + (1 − α)f(y) ≥ f(αx+ (1 − α)y)

Inequality 1. [Jensen’s inequality - for finite sequences] for convex function f and

distinct xi and 0 < αi < 1 with α1 + · · · = αn = 1

α1f(x1) + · · · + αnf(xn) ≥ f(α1x1 + · · · + αnxn)

• if f is strictly convex, equality holds if and only if x1 = · · · = xn
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Jensen’s inequality - for random variables

• discrete random variable interpretation of Jensen’s inequality in summation form -

assume Prob(X = xi) = αi, then

E f(X) = α1f(x1) + · · · + αnf(xn) ≥ f(α1x1 + · · · + αnxn) = f (EX)

• true for any random variables X

Inequality 2. [Jensen’s inequality - for random variables] for random vector X

(page 438 for definition)

E f(X) ≥ f(EX)

if probability density function (PDF) pX given,

∫
f(x)pX(x)dx ≥ f

(∫
xpX(x)dx

)
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Proof for n = 3

• for any x, y, z and α, β, γ > 0 with α+ β + γ = 1

αf(x) + βf(y) + γf(z) = (α+ β)

(
α

α+ β
f(x) +

β

α+ β
f(y)

)
+ γf(z)

≥ (α+ β)f

(
α

α+ β
x+

β

α+ β
y

)
+ γf(z)

≥ f

(
(α+ β)

(
α

α+ β
x+

β

α+ β
y

)
+ γz

)
= f(αx+ βy + γz)
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Proof for all n

• use mathematical induction

– assume that Jensen’s inequality holds for 1 ≤ n ≤ m

– for distinct xi and αi > 0 (1 ≤ i ≤ m+ 1) with α1 + · · · + αm+1 = 1

m+1∑
i=1

αif(xi) =

 m∑
j=1

αj

 m∑
i=1

(
αi∑m
j=1 αj

f(xi)

)
+ αm+1f(xm+1)

≥

 m∑
j=1

αj

 f

(
m∑
i=1

(
αi∑m
j=1 αj

xi

))
+ αm+1f(xm+1)

=

 m∑
j=1

αj

 f

(
1∑m
j=1 αj

m∑
i=1

αixi

)
+ αm+1f(xm+1)

≥ f

(
m∑
i=1

αixi + αm+1xm+1

)
= f

(
m+1∑
i=1

αixi

)
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1st and 2nd order conditions for convexity

• 1st order condition (assuming differentiable f : R → R) - f is strictly convex if and

only if for any x ̸= y

f(y) > f(x) + f
′
(x)(y − x)

• 2nd order condition (assuming twice-differentiable f : R → R)

– if f ′′(x) > 0, f is strictly convex

– f is convex if and only if for any x

f
′′
(x) ≥ 0
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Jensen’s inequality examples

• f(x) = x2 is strictly convex

a2 + b2

2
≥
(
a+ b

2

)2

• f(x) = x4 is strictly convex

a4 + b4

2
≥
(
a+ b

2

)4

• f(x) = exp(x) is strictly convex

exp(a) + exp(b)

2
≥ exp

(
a+ b

2

)
• equality holds if and only if a = b for all inequalities

Searching for Universal Truths - Algebra - Inequalities 36



Sunghee Yun August 4, 2025

1st and 2nd order conditions for convexity - vector version

• 1st order condition (assuming differentiable f : Rn → R) - f is strict convex if and

only if for any x, y

f(y) > f(x) + ∇f(x)T (y − x)

where ∇f(x) ∈ Rn with ∇f(x)i = ∂f(x)/∂xi

• 2nd order condition (assuming twice-differentiable f : Rn → R)

– if ∇2f(x) ≻ 0, f is strictly convex

– f is convex if and only if for any x

∇2
f(x) ⪰ 0

where ∇2f(x) ∈ Rn×n is Hessian matrix of f evaluated at x, i.e., ∇2f(x)i,j =

∂2f(x)/∂xi∂xj

Searching for Universal Truths - Algebra - Inequalities 37



Sunghee Yun August 4, 2025

Jensen’s inequality examples - vector version

• assume f : Rn → R

• f(x) = ∥x∥2 =
√∑

x2
i is strictly convex

(∥a∥2 + 2∥b∥2)/3 ≥ ∥(a+ 2b)/3∥2

– equality holds if and only if a = b ∈ Rn

• f(x) = ∥x∥p = (
∑

|xi|p)1/p (p > 1) is strictly convex

1

k

(
k∑
i=1

∥x(i)∥p

)
≥

∥∥∥∥∥1k
k∑
i=1

x
(i)

∥∥∥∥∥
p

– equality holds if and only if x(1) = · · · = x(k) ∈ Rn
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AM ≥ GM

• for all a, b > 0

a+ b

2
≥

√
ab

– equality holds if and only if a = b

• below most general form holds

Inequality 3. [AM-GM inequality] for any n ai > 0 and αi > 0 with α1+· · ·+αn =

1

α1a1 + · · · + αnan ≥ a
α1
1 · · · aαnn

where equality holds if and only if a1 = · · · = an

• let’s prove these incrementally (for rational αi)
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Proof of AM ≥ GM - simplest case

• use fact that x2 ≥ 0 for any x ∈ R

• for any a, b > 0

(
√
a−

√
b)

2 ≥ 0

⇔ a
2 − 2

√
ab+ b

2 ≥ 0

⇔ a+ b ≥ 2
√
ab

⇔
a+ b

2
≥

√
ab

– equality holds if and only if a = b
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Proof of AM ≥ GM - when n = 4 and n = 8

• for any a, b, c, d > 0

a+ b+ c+ d

4
≥

2
√
ab+ 2

√
cd

4
=

√
ab+

√
cd

2
≥
√√

ab
√
cd =

4√
abcd

– equality holds if and only if a = b and c = d and ab = cd if and only if

a = b = c = d

• likewise, for a1, . . . , a8 > 0

a1 + · · · + a8

8
≥

√
a1a2 +

√
a3a4 +

√
a5a6 +

√
a7a8

4

≥ 4
√√

a1a2
√
a3a4

√
a5a6

√
a7a8

= 8
√
a1 · · · a8

– equality holds if and only if a1 = · · · = a8
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Proof of AM ≥ GM - when n = 2m

• generalized to cases n = 2m 2m∑
a=1

ai

 /2
m ≥

 2m∏
a=1

ai

1/2m

– equality holds if and only if a1 = · · · = a2m

• can be proved by mathematical induction
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Proof of AM ≥ GM - when n = 3

• proof for n = 3

a+ b+ c

3
=

a+ b+ c+ (a+ b+ c)/3

4
≥ 4
√
abc(a+ b+ c)/3

⇒
(
a+ b+ c

3

)4

≥ abc(a+ b+ c)/3

⇔
(
a+ b+ c

3

)3

≥ abc

⇔
a+ b+ c

3
≥ 3√

abc

– equality holds if and only if a = b = c = (a+ b+ c)/3 if and only if a = b = c
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Proof of AM ≥ GM - for all integers

• for any integer n ̸= 2m

• for m such that 2m > n

a1 + · · · + an

n
=

a1 + · · · + an + (2m − n)(a1 + · · · + an)/n

2m

≥ 2m
√
a1 · · · an · ((a1 + · · · + an)/n)2

m−n

⇔
(
a1 + · · · + an

n

)2m

≥ a1 · · · an ·
(
a1 + · · · + an

n

)2m−n

⇔
(
a1 + · · · + an

n

)n
≥ a1 · · · an

⇔
a1 + · · · + an

n
≥ n

√
a1 · · · an

– equality holds if and only if a1 = · · · = an
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Proof of AM ≥ GM - rational αi

• given n positive rational αi, we can find n natural numbers qi such that

αi =
qi

N
where q1 + · · · + qn = N

• for any n positive ai ∈ R and positive n αi ∈ Q with α1 + · · · + αn = 1

α1a1 + · · · + αnan =
q1a1 + · · · + qnan

N
≥ N
√
a
q1
1 · · · aqnn = a

α1
1 · · · aαnn

– equality holds if and only if a1 = · · · = an
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Proof of AM ≥ GM - real αi

• exist n rational sequences {βi,1, βi,2, . . .} (1 ≤ i ≤ n) such that

β1,j + · · · + βn,j = 1 ∀ j ≥ 1

lim
j→∞

βi,j = αi ∀ 1 ≤ i ≤ n

• for all j

β1,ja1 + · · · + βn,jan ≥ a
β1,j
1 · · · a

βn,j
n

hence

lim
j→∞

(β1,ja1 + · · · + βn,jan) ≥ lim
j→∞

a
β1,j
1 · · · a

βn,j
n

⇔ α1a1 + · · · + αnan ≥ a
α1
1 · · · aαnn

• cannot prove equality condition from above proof method
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Proof of AM ≥ GM using Jensen’s inequality

• (− log) is strictly convex function because

d2

dx2
(− log(x)) =

d

dx

(
−

1

x

)
=

1

x2
> 0

• Jensen’s inequality implies for ai > 0, αi > 0 with
∑
αi = 1

− log
(∏

a
αi
i

)
= −

∑
log
(
a
αi
i

)
=
∑

αi(− log(ai)) ≥ − log
(∑

αiai
)

• (− log) strictly monotonically decreases, hence
∏
a
αi
i ≤

∑
αiai, having just proved

α1a1 + · · · + αnan ≥ a
α1
1 · · · aαnn

where equality if and only if ai are equal (by Jensen’s inequality’s equality condition)
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Cauchy-Schwarz inequality

Inequality 4. [Cauchy-Schwarz inequality] for any ai, bi ∈ R

(a
2
1 + · · · + a

2
n)(b

2
1 + · · · + b

2
n) ≥ (a1b1 + · · · + anbn)

2

• middle school proof ∑
(tai + bi)

2 ≥ 0 ∀ t ∈ R

⇔ t
2
∑

a
2
i + 2t

∑
aibi +

∑
b
2
i ≥ 0 ∀ t ∈ R

⇔ ∆ =
(∑

aibi
)2

−
∑

a
2
i

∑
b
2
i ≤ 0

– equality holds if and only if ∃t ∈ R, tai + bi = 0 for all 1 ≤ i ≤ n
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Cauchy-Schwarz inequality - another proof

• x ≥ 0 for any x ∈ R, hence∑
i

∑
j

(aibj − ajbi)
2 ≥ 0

⇔
∑
i

∑
j

(a
2
ib

2
j − 2aiajbibj + a

2
jb

2
i ) ≥ 0

⇔
∑
i

∑
j

a
2
ib

2
j +

∑
i

∑
j

a
2
jb

2
i − 2

∑
i

∑
j

aiajbibj ≥ 0

⇔ 2
∑
i

a
2
i

∑
j

b
2
j − 2

∑
i

aibi
∑
j

ajbj ≥ 0

⇔
∑
i

a
2
i

∑
j

b
2
j −

(∑
i

aibi

)2

≥ 0

– equality holds if and only if aibj = ajbi for all 1 ≤ i, j ≤ n
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Cauchy-Schwarz inequality - still another proof

• for any x, y ∈ R and α, β > 0 with α+ β = 1

(αx− βy)
2
= α

2
x
2
+ β

2
y
2 − 2αβxy

= α(1 − β)x
2
+ (1 − α)βy

2 − 2αβxy ≥ 0

⇔ αx
2
+ βy

2 ≥ αβx
2
+ αβy

2
+ 2αβxy = αβ(x+ y)

2

⇔ x
2
/α+ y

2
/β ≥ (x+ y)

2

• plug in x = ai, y = bi, α = A/(A + B), β = B/(A + B) where A =
√∑

a2i ,

B =
√∑

b2i∑
(a

2
i/α+ b

2
i/β) ≥

∑
(ai + bi)

2 ⇔ (A+ B)
2 ≥ A

2
+ B

2
+ 2

∑
aibi

⇔ AB ≥
∑

aibi ⇔ A
2
B

2 ≥
(∑

aibi
)2

⇔
∑

a
2
i

∑
b
2
i ≥

(∑
aibi
)2
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Cauchy-Schwarz inequality - proof using determinant

• almost the same proof as first one - but using 2-by-2 matrix determinant∑
(xai + ybi)

2 ≥ 0 ∀ x, y ∈ R

⇔ x
2
∑

a
2
i + 2xy

∑
aibi + y

2
∑

b
2
i ≥ 0 ∀ x, y ∈ R

⇔
[
x y

] [ ∑
a2i

∑
aibi∑

aibi
∑
b2i

] [
x

y

]
≥ 0 ∀ x, y ∈ R

⇔
∣∣∣∣ ∑ a2i

∑
aibi∑

aibi
∑
b2i

∣∣∣∣ ≥ 0 ⇔
∑

a
2
i

∑
b
2
i −

(∑
aibi
)2

≥ 0

– equality holds if and only if

(∃x, y ∈ R with xy ̸= 0) (xai + ybi = 0 ∀1 ≤ i ≤ n)

• allows beautiful generalization of Cauchy-Schwarz inequality
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Cauchy-Schwarz inequality - generalization

• want to say something like
∑n

i=1(xai + ybi + zci + wdi + · · · )2

• run out of alphabets . . . - use double subscripts
n∑
i=1

(x1A1,i + x2A2,i + · · · + xmAm,i)
2 ≥ 0 ∀ xi ∈ R

⇔
n∑
i=1

(x
T
ai)

2
=

n∑
i=1

x
T
aia

T
i x = x

T

(
n∑
i=1

aia
T
i

)
x ≥ 0 ∀ x ∈ Rm

⇔

∣∣∣∣∣∣∣∣∣
∑n

i=1A
2
1,i

∑n
i=1A1,iA2,i · · ·

∑n
i=1A1,iAm,i∑n

i=1A1,iA2,i

∑n
i=1A

2
2,i · · ·

∑n
i=1A2,iAm,i

... ... . . . ...∑n
i=1A1,iAm,i

∑n
i=1A2,iAm,i · · ·

∑n
i=1A

2
m,i

∣∣∣∣∣∣∣∣∣ ≥ 0

where ai =
[
A1,i · · · Am,i

]T ∈ Rm

– equality holds if and only if ∃x ̸= 0 ∈ Rm, xTai = 0 for all 1 ≤ i ≤ n
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Cauchy-Schwarz inequality - three series of variables

• let m = 3  ∑
a2i

∑
aibi

∑
aici∑

aibi
∑
b2i

∑
bici∑

aici
∑
bici

∑
c2i

 ⪰ 0

⇒
∑

a
2
i

∑
b
2
i

∑
c
2
i + 2

∑
aibi

∑
bici

∑
ciai

≥
∑

a
2
i

(∑
bici
)2

+
∑

b
2
i

(∑
aici
)2

+
∑

c
2
i

(∑
aibi
)2

– equality holds if and only if ∃x, y, z ∈ R, xai + ybi + zci = 0 for all 1 ≤ i ≤ n

• questions for you

– what does this mean?

– any real-world applications?
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Cauchy-Schwarz inequality - extensions

Inequality 5. [Cauchy-Schwarz inequality - for complex numbers] for ai, bi ∈ C∑
|ai|2

∑
|bi|2 ≥

∣∣∣∑ aibi

∣∣∣2
Inequality 6. [Cauchy-Schwarz inequality - for infinite sequences] for two complex

infinite sequences ⟨ai⟩∞i=1 and ⟨bi⟩∞i=1

∞∑
i=1

|ai|2
∞∑
i=1

|bi|2 ≥

∣∣∣∣∣
∞∑
i=1

aibi

∣∣∣∣∣
2

Inequality 7. [Cauchy-Schwarz inequality - for complex functions] for two complex

functions f, g : [0, 1] → C ∫
|f |2

∫
|g|2 ≥

∣∣∣∣∫ fg

∣∣∣∣2
• note that all these can be further generalized as in page 52
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Integers

• integers (Z) - . . .− 2,−1, 0, 1, 2, . . .

– first defined by Bertrand Russell

– algebraic structure - commutative ring

- addition, multiplication defined, but divison not defined

- addition, multiplication are associative

- multiplication distributive over addition

- addition, multiplication are commutative

• natural numbers (N)

– 1, 2, . . .
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Division and prime numbers

• divisors for n ∈ N
{d ∈ N|d divides n}

• prime numbers

– p is primes if 1 and p are only divisors
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Fundamental theorem of arithmetic

Theorem 15. [fundamental theorem of arithmetic] integer n ≥ 2 can be factored

uniquely into products of primes, i.e., exist distinct primes, p1, . . . , pk, and e1, . . . , ek ∈
N such that

n = p
e1
1 p

e2
2 · · · pekk

• hence, integers are factorial ring (Definition 71)
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Elementary quantities

• greatest common divisor (gcd) (of a and b)

gcd(a, b) = max{d|d divides both a and b}

– for definition of gcd for general entire rings, refer to Definition 73

• least common multiple (lcm) (of a and b)

lcm(a, b) = min{m|both a and b divides m}

• a and b coprime, relatively prime, mutually prime ⇔ gcd(a, b) = 1
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Are there infinite number of prime numbers?

• yes!

• proof

– assume there only exist finite number of prime numbers, e.g., p1 < p2 < · · · < pn

– but then, p1 ·p2 · · · pn+1 is prime, but which is greater than pn, hence contradiction
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Integers modulo n

Definition 3. [modulo] when n divides a− b, a, said to be equivalent to b modulo n,

denoted by

a ≡ b (mod n)

read as “a congruent to b mod n”

• a ≡ b (mod n) and c ≡ d (mod n) imply

– a+ c ≡ b+ d (mod n)

– ac ≡ bd (mod n)

Definition 4. [congruence class] classes determined by modulo relation, called

congruence or residue class under modulo

Definition 5. [integers modulo n] set of equivalence classes under modulo, denoted by

Z/nZ, called integers modulo n or integers mod n

Searching for Universal Truths - Algebra - Number Theory - Queen of Mathematics 61



Sunghee Yun August 4, 2025

Euler’s theorem

Definition 6. [Euler’s totient function] for n ∈ N,

φ(n) = (p1 − 1)p
e1−1
1 · · · (pk − 1)p

ek−1

k = n
∏

prime p dividing n

(1 − 1/p)

called Euler’s totient function, also called Euler φ-function

• e.g., φ(12) = φ(22 ·31) = 1·21 ·2·30 = 4, φ(10) = φ(21 ·51) = 1·20 ·4·50 = 4

Theorem 16. [Euler’s theorem - number theory] for coprime n and a

a
φ(n) ≡ 1 (mod n)

• e.g., 54 ≡ 1 (mod 12) whereas 44 ≡ 4 ̸= 1 (mod 12)

• Euler’s theorem underlies RSA cryptosystem, which is pervasively used in internet

communication
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Why abstract algebra?

• it’s fun!

• can understand instrict structures of algebraic objects

• allow us to solve extremely practical problems (depending on your definition of

practicality)

– e.g., can prove why root formulas for polynomials of order n ≥ 5 do not exist

• prepare us for pursuing further math topics such as

– differential geometry

– algebraic geometry

– analysis

– representation theory

– algebraic number theory

Searching for Universal Truths - Abstract Algebra - Why Abstract Algebra? 65



Sunghee Yun August 4, 2025

Some history

• by the way, historically, often the case that application of an idea presented before

extracting and presenting the idea on its own right

• e.g., Galois used “quotient group” only implicitly in his 1830’s investigation, and it had

to wait until 1889 to be explicitly presented as “abstract quotient group” by Hölder
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Monoids

Definition 7. [law of composition] mapping S × S → S for set S, called law of

composition (of S to itself)

- when (∀x, y, z ∈ S)((xy)z = x(yz)), composition is said to be associative

- e ∈ S such that (∀x ∈ S)(ex = xe = x), called unit element - always unique

Proof : for any two unit elements e and f , e = ef = f, hence, e = f

Definition 8. [monoids] set M with composition which is associative and having unit

element, called monoid (so in particular, M is not empty)

- monoid M with (∀x, y ∈ M) (xy = yx), called commutative or abelian monoid

- subset H ⊂ M which has the unit element e and is itself monoid, called submonoid
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Groups

Definition 9. [group] monoid G with

(∀x ∈ G) (∃y ∈ G) (xy = yx = e)

called group

- for x ∈ G, y ∈ G with xy = yx = e, called inverse of x

- group derived from commutative monoid, called abelian group or commutative group

- group G with |G| < ∞, called finite group

- (similarly as submonoid) H ⊂ G that has unit element and is itself group, called

subgroup

- subgroup consisting only of unit element, called trivial
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Cyclic groups, generators, and direct products

Definition 10. [cyclic groups] group G with

(∃a ∈ G) (∀x ∈ G) (∃n ∈ N) (x = a
n
)

called cyclic group, such a ∈ G called cyclic generator

Definition 11. [generators] for group G, S ⊂ G with

(∀x ∈ G) (x is arbitrary product of elements or inverse elements of S)

called set of generators for G, said to generate G, denoted by G = ⟨S⟩

Definition 12. [direct products] for two groups G1 and G2, group G1 ×G2 with

(∀(x1, x2), (y1, y2) ∈ G1 ×G2) ((x1, x2)(y1, y2) = (x1y1, x2, y2) ∈ G1 ×G2)

whose unit element defined by (e1, e2) where e1 and e2 are unit elements of G1 and G2

respectively, called direct product of G1 and G2
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Homeomorphism and isomorphism

Definition 13. [homeomorphism] for monoids M and M ′, mapping f : M → M ′

with f(e) = e′

(x, y ∈ M) (f(xy) = f(x)f(y))

where e and e′ are unit elements ofM andM ′ respectively, called monoid-homeomorphism

or simple homeomorphism

- group homeomorphism f : G → G′ is similarly monoid-homeomorphism

- homeomorphism f : G → G′ where exists g : G → G′ such that f ◦ g : G′ → G′

and g ◦ f : G → G are identity mappings, called isomorphism, sometimes denoted

by G ≈ G′

- homeomorphism of G into itself, called endomorphism

- isomorphism of G onto itself, called automorphism

• set of all automorphisms of G is itself group, denoted by Aut(G)
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Kernel, image, and embedding of homeomorphism

Definition 14. [kernel of homeomorphism] for group-homeomorphism f : G → G′

where e′ is unit element of G′, f−1({e′}), which is subgroup of G, called kernel of f ,

denoted by Ker f

Definition 15. [embedding of homeomorphism] homeomorphism f : G → G′

establishing isomorphism between G and f(G) ⊂ G′, called embedding

Proposition 1. [group homeomorphism and isomorphism]

- for group-homeomorphism f : G → G′, f(G) ⊂ G′ is subgroup of G′

- homeomorphism whose kernel is trivial is injective, often denoted by special arrow

f : G ↪→ G
′

- surjective homeomorphism whose kernel is trivial is isomorphism

- for group G, its generators S, and another group G′, map f : S → G′ has at most

one extension to homeomorphism of G into G′
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Orthogonal subgroups

Proposition 2. [orthogonal subgroups] for groupG and two subgroupsH andK ⊂ G

with HK = G, H ∩K = {e}, and (x ∈ H, y ∈ K) (xy = yx),

f : H ×K → G

with (x, y) 7→ xy is isomorphism

can generalize to finite number of subgroups, H1, . . . , Hn such that

H1 · · ·Hn = G

and

Hk+1 ∩ (H1 · · ·Hk) = {e}

in which case, G is isomorphic to H1 · · ·Hn
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Cosets of groups

Definition 16. [cosets of groups] for group G and subgroup H ⊂ G, aH for some

a ∈ G, called left coset of H in G, and element in aH, called coset representation of

aH - can define right cosets similarly

Proposition 3. [cosets of groups] for group G and subgroup H ⊂ G,

- for a ∈ G, x 7→ ax induces bijection of H onto aH, hence all left cosets have same

cardinality

- aH ∩ bH ̸= ∅ for a, b ∈ G implies aH = bH

- hence, G is disjoint union of left cosets of H

- same statements can be made for right cosets

Definition 17. [index and order of group] number of left cosets of H in G, called

index of H in G, denoted by (G : H) - index of trivial subgroups, called order of G,

denoted by (G : 1)
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Indices and orders of groups

Proposition 4. [indices and orders] for group G and two subgroups H and K ⊂ G

with K ⊂ H,

(G : H)(H : K) = (G : K)

when K is trivial, we have

(G : H)(H : 1) = (G : 1)

(proof can be found in Proof 1)

hence, if (G : 1) < ∞, both (G : H) and (H : 1) divide (G : 1)
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Normal subgroup

Definition 18. [normal subgroups] subgroup H ⊂ G of group G with

(∀x ∈ G) (xH = Hx) ⇔ (∀x ∈ G)
(
xHx

−1
= H

)
called normal subgroup of G, in which case

- set of cosets {xH|x ∈ G} with law of composition defined by (xH)(yH) =

(xy)H, forms group with unit element H, denoted by G/H, called factor group of

G by H, read G modulo H or G mod H

- x 7→ xH induces homeomorphism of X onto {xH|x ∈ G}, called canonical map,

kernel of which is H

Proposition 5. [normal subgroups and factor groups]

- kernel of (every) homeomorphism of G is normal subgroups of G

- for family of normal subgroups of G, ⟨Nλ⟩,
⋂
Nλ is also normal subgroup

- every subgroup of abelian group is normal

- factor group of abelian group is abelian

- factor group of cyclic group is cyclic
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Normalizers and centralizers

Definition 19. [normalizers and centralizers] for subset S ⊂ G of group G,

{x ∈ G|xSx−1
= S}

is subgroup, called normalizer of S, and also called centralizer of a when S = {a} is

singletone;

{x ∈ G|(∀y ∈ S)(xyx
−1

= y)}

called centralizer of S, and centralizer of G itself, called center of G

• e.g., A 7→ detA of multiplicative group of square matrices in Rn×n into R ∼ {0} is

homeomorphism, kernel of which called special linear group, and (of course) is normal
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Normalizers and congruence

Proposition 6. [normalizers of groups] subgroup H ⊂ G of group G is normal

subgroup of its normalizer NH

• subgroup H ⊂ G of group G is normal subgroup of its normalizer NH

• subgroup K ⊂ G with H ⊂ K where H is normal in K is contained in NH

• for subgroup K ⊂ NH, KH is group and H is normal in KH

• normalizer of H is largest subgroup of G in which H is normal

Definition 20. [congruence with respect to normal subgroup] for normal subgroup

H ⊂ G of group G, we write

x ≡ y (mod H)

if xH = yH, read x and y are congruent modulo H - this notation used mostly for

additive groups
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Exact sequences of homeomorphisms

Definition 21. [exact sequences of homeomorphisms] below sequence of homeomorphisms

with Im f = Ker g

G
′ f−→ G

g−→ G
′′

said to be exact

below sequence of homeomorphisms with Im fi = Ker fi+1

G1
f1−→ G2

f2−→ G3 −→ · · ·
fn−1−→ Gn

said to be exact

• for normal subgroup H ⊂ G of group G, sequence H
j→ G

φ→ G/H is exact where

j is inclusion and φ

• 0 → G′ f→ G
g→ G′′ → 0 is exact if and only if f injective, g surjective, and

Im f = Ker g
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• if H = Ker g above, 0 → H → G → G/H → 0

• more precisely, exists commutative diagram as in the figure, in which vertical mappings

are isomorphisms and rows are exact

- - - -

- - - -

? ? ?

0 G′ G G′′ 0

0 H G G/H 0

f g
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Canonical homeomorphism examples

all homeomorphisms described below called canonical

• for two groups G & G′ and homeomorphism f : G → G′ whose kernel is H, exists

unique homeomorphism f∗ : G/H → G′ with

f = f∗ ◦ φ

where φ : G → G/H is canonical map, and f∗ is injective

– f∗ can be defined by xH 7→ f(x)

– f∗ said to be induced by f

– f∗ induces isomorphism λ : G/H → Im f

– below sequence summarizes above statements

G
φ→ G/H

λ→ Im f
j→ G

where j is inclusion
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• for group G, subgroup H ⊂ G, and homeomorphism f : G → G′ whose kernel

containsH, intersection of all normal subgroups containingH, N , which is the smallest

normal subgroup containing H, is contained in Ker f , i.e., N ⊂ Ker f , and exists

unique homeomorphism, f∗ : G/N → G′ such that

f = f∗ ◦ φ

where φ : G → G/H is canonical map

– f∗ can be defined by xN 7→ f(x)

– f∗ said to be induced by f

• for subgroups of G, H and K with K ⊂ H, xK 7→ xH induces homeomorphism of

G/K into G/H, whose kernel is {xK|x ∈ H}, thus canonical isomorphism

(G/K)/(H/K) ≈ (G/K)

this can be shown in the figure where rows are exact
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- - - -

- - - -

? ? ?

0 H G G/H 0

0 H/K G/K G/H 0

can can id

• for subgroup H ⊂ G and K ⊂ G with H contained in normalizer of K, H ∩K is

normal subgroup ofH,HK = KH is subgroup ofG, exists surjective homeomorphism

H → HK/K

with x 7→ xK, whose kernel is H ∩K, hence canonical isomorphism

H/(H ∩K) ≈ HK/K

• for group homeomorphism f : G → G′, normal subgroup of G′, H ′,

H = f
−1

(H
′
) ⊂ G
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as shown in the figure,

-

6

-

6

f−1(H ′)

G G′

H ′

H is normal in G and kernel of homeomorphism

G
f→ G

′ φ→ G
′
/H

′

is H where φ is canonical map, hence we have injective homeomorphism

f̄ : G/H → G
′
/H

′

again called canonical homeomorphism, giving commutative diagram in the figure; if f

is surjective, f̄ is isomorphism
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- - - -

- - - -

? ? ?

0 H G G/H 0

0 H ′ G′ G′/H ′ 0

f f̄
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Towers

Definition 22. [towers of groups] for group G, sequence of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gm

called tower of subgroups

• said to be normal if every Gi+1 is normal in Gi

• said to be abelian if normal and every factor group Gi/Gi+1 is abelian

• said to be cyclic if normal and every factor group Gi/Gi+1 is cyclic

Proposition 7. [towers inded by homeomorphism] for group homeomorphism f :

G → G′ and normal tower

G
′
= G

′
0 ⊃ G

′
1 ⊃ G

′
2 ⊃ · · · ⊃ G

′
m

tower

f
−1

(G
′
) = f

−1
(G

′
0) ⊃ f

−1
(G

′
1) ⊃ f

−1
(G

′
2) ⊃ · · · ⊃ f

−1
(G

′
m)

is
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• normal if G′
i form normal tower

• abelian if G′
i form abelian tower

• cyclic if G′
i form cyclic tower

because every homeomorphism

Gi/Gi+1 → G
′
i/G

′
i+1

is injective
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Refinement of towers and solvability of groups

Definition 23. [refinement of towers] for tower of subgroups, tower obtained by

inserting finite number of subgroups, called refinement of tower

Definition 24. [solvable groups] group having an abelian tower whose last element is

trivial subgroup, said to be solvable

Proposition 8. [finite solvable groups]

- abelian tower of finite group admits cyclic refinement

- finite solvable group admits cyclic tower, whose last element is trivial subgroup

Theorem 17. [Feit-Thompson theorem] group whose order is prime power is solvable

Theorem 18. [solvability condition in terms of normal subgroups] for group G and

its normal subgroup H, G is solvable if and only if both H and G/H are solvable
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Commutators and commutator subgroups

Definition 25. [commutator] for group G, xyx−1y−1 for x, y ∈ G, called

commutator

Definition 26. [commutator subgroups] subgroup generated by commutators of group

G, called commutator subgroup, denoted by GC, i.e.

G
C
= ⟨{xyx−1

y
−1|x, y ∈ G}⟩

• GC is normal in G

• G/GC is commutative

• GC is contained in kernel of every homeomorphism of G into commutative group

- (proof can be found in Proof 2) of above statements

• commutator group is at the heart of solvability and non-solvability problems!
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Simple groups

Definition 27. [simple groups] non-trivial group having no normal subgroup other than

itself and trivial subgroup, said to be simple

Proposition 9. [simple groups] abelian group is simple if and only if cycle of prime

order

Searching for Universal Truths - Abstract Algebra - Groups 90



Sunghee Yun August 4, 2025

Butterfly lemma

Lemma 1. [butterfly lemma - Zassenhaus] for subgroups U and V of a group and

normal subgroups u and v of U and V respectively,

u(U ∩ v) is normal in u(U ∩ V )

(u ∩ V )v is normal in (U ∩ V )v

and factor groups are isomorphic, i.e.,

u(U ∩ V )/u(U ∩ v) ≈ (U ∩ V )v/(u ∩ V )v

these shown in the figure

• indeed

(U ∩ V )/((u ∩ V )(U ∩ v)) ≈ u(U ∩ V )/u(U ∩ v) ≈ (U ∩ V )v/(u ∩ V )v
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Equivalent towers

Definition 28. [equivalent towers] for two normal towers of same height starting from

same group ending with trivial subgroup

G = G1 ⊃ G2 ⊃ G3 ⊃ · · · ⊃ Gn+1 = {e}

G = H1 ⊃ H2 ⊃ H3 ⊃ · · · ⊃ Hn+1 = {e}
with

Gi/Gi+1 ≈ Hπ(i)+1/Hπ(i)

for some permutation π ∈ Perm({1, . . . , n}), i.e., sequences of factor groups are same

up to isomorphisms and permutation of indices, said to be equivalent
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Schreier and Jordan-Hölder theorems

Theorem 19. [Schreier theorem] two normal towers starting from same group and

ending with trivial subgroup have equivalent refinement

Theorem 20. [Jordan-Holder theorem] all normal towers starting from same group

and ending with trivial subgroup where each factor group is non-trivial and simple are

equivalent
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Cyclic groups

Definition 29. [exponent of groups and group elements] for group G, n ∈ N with

an = e for a ∈ G, called exponent of a; n ∈ N with xn = e for every x ∈ G, called

exponent of G

Definition 30. [period of group elements] for group G and a ∈ G, smallest n ∈ N
with an = e, called period of a

Proposition 10. [period of elements of finite groups] for finite groupG of order n >

1, period of every non-unit element a (̸= e) devided n; if n is prime number, G is cyclic

and period of every generator is n

Proposition 11. [subgroups of cyclic groups] every subgroup of cyclic group is cyclic

and image of every homeomorphism of cyclic group is cyclic
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Properties of cyclic groups

Proposition 12. [properties of cyclic groups]

- infinity cyclic group has exactly two generators; if a is one, a−1 is the other

- for cyclic group G of order n and generator x, set of generators of G is

{xm|m is relatively prime to n}

- for cyclic group G and two generators a and b, exists automorphism of G mapping

a onto b; conversely, every automorphism maps a to some generator

- for cyclic group G of order n and d ∈ N dividing n, exists unique subgroup of order

d

- for cyclic groups G1 and G2 of orders n and m respectively with n and m relatively

prime, G1 ×G2 is cyclic group

- for non-cyclic finite abelian group G, exists subgroup isomorphic to C × C with C

cyclic with prime order
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Symmetric groups and permutations

Definition 31. [symmetric groups and permutations] for nonempty set S, group G

of bijective functions of S onto itself with law of composition being function composition,

called symmetric group of S, denoted by Perm(S); elements in Perm(S) called

permutations of S; element swapping two disjoint elements in S leaving every others left,

called transposition

Proposition 13. [sign homeomorphism of finite symmetric groups] for finite symmetric

group Sn, exits unique homeomorphism ϵ : Sn → {−1, 1} mapping every transposition,

τ , to −1, i.e., ϵ(τ) = −1

Definition 32. [alternating groups] element of finite symmetric group σ with ϵ(σ) =

1, called even, element σ with ϵ(σ) = −1, called odd; kernel of ϵ, called alternating

group, denoted by An

Theorem 21. [solvability of finite symmetric groups] symmetric group Sn with n ≥
5 is not solvable

Theorem 22. [simplicity of alternating groups] alternating group An with n ≥ 5 is

simple
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Operations of group on set

Definition 33. [operations of group on set] for group G and set S, homeomorphism

π : G → Perm(S)

called operation of G on S or action of G on S

- S, called G-set

- denote π(x) for x ∈ G by πx, hence homeomorphism denoted by x 7→ πx

• obtain mapping from such operation, G× S → S, with (x, s) 7→ πx(s)

• often abbreviate πx(s) by xs, with which the following two properties satisfied

– (∀x, y ∈ G, s ∈ S) (x(ys) = (xy)s)

– (∀s ∈ S) (es = s)

• conversely, for mapping G×S → S with (x, s) 7→ xs satisfying above two properties,

s 7→ xs is permutation for x ∈ G, hence πx is homeomorphism of G into Perm(S)

• thus, operation of G on S can be defined as mapping S × G → S satisfying above

two properties
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Conjugation

Definition 34. [conjugation of groups] for group G and map γx : G → G with

γx(y) = xyx−1, homeomorphism

G → Aut(G) defined by x 7→ γx

called conjugation, which is operation of G on itself

• γx, called inner

• kernel of conjugation is center of G

• to avoid confusion, instead of writing xy for γx(y), write

γx(y) = xyx
−1

=
x
y and γx−1(y) = x

−1
yx = y

x

• for subset A ⊂ G, map (x,A) 7→ xAx−1 is operation of G on set of subsets of G

• similarly for subgroups of G

• two subsets of G, A and B with B = xAx−1 for some x ∈ G, said to be conjugate
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Translation

Definition 35. [translation] operation of G on itself defined by map

(x, y) 7→ xy

called translation, denoted by Tx : G → G with Tx(y) = xy

• for subgroup H ⊂ G, Tx(H) = xH is left coset

– denote set of left cosets also by G/H even if H is not normal

– denote set of right cosets also by H\G

• examples of translation

– G = GL(V ), group of linear automorphism of vector space with field F , for

which, map (A, v) 7→ Av for A ∈ G and v ∈ V defines operation of G on V

- G is subgroup of group of permutations, Perm(V )

– for V = F n, G is group of nonsingular n-by-n matrices
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Isotropy

Definition 36. [isotropy] for operation of group G on set S

{x ∈ G|xs = s}

called isotropy of G, denoted by Gs, which is subgroup of G

• for conjugation operation of group G, Gs is normalizer of s ∈ G

• isotropy groups are conjugate, e.g., for s, s′ ∈ S and y ∈ G with ys = s′,

Gs′ = yGsy
−1

• by definition, kernel of operation of G on S is

K =
⋂
s∈S

Gs ⊂ G

• operation with trivial kernel, said to be faithful

• s ∈ G with Gs = G, called fixed point
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Orbits of operation

Definition 37. [orbits of operation] for operation of group G on set S, {xs|x ∈ G},
called orbit of s under G, denoted by Gs

• for x, y ∈ G in same coset of Gs, xs = ys, i.e. (∃z ∈ G) (x, y ∈ zGs) ⇔ xs =

ys

• hence, mapping G/Gs → S with x 7→ xGs is morphism of G-sets, thus

Proposition 14. for group G, operating on set S and s ∈ S, order of orbit Gs is equal

to index (G : Gs)

Proposition 15. for subgroup H of group G, number of conjugate subgroups to H is

index of normalizer of H in G

Definition 38. [transitive operation] operation with one orbit, said to be transitive
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Orbit decomposition and class formula

• orbits are disjoint

S =
∐
λ∈Λ

Gsλ

where sλ are elements of distinct orbits

Formula 1. [orbit decomposition formula] for group G operating on set S, index set

Λ whose elements represent distinct orbits

|S| =
∑
λ∈Λ

(G : Gλ)

Formula 2. [class formula] for group G and set C ⊂ G whose elements represent

distinct conjugacy classes

(G : 1) =
∑
x∈C

(G : Gx)
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Sylow subgroups
Definition 39. [sylow subgroups] for prime number p, finite group with order pn for

some n ≥ 0, called p-group; subgroup H ⊂ G of finite group G with order pn for some

n ≥ 0, called p-subgroup; subgroup of order pn where pn is highest power of p dividing

order of G, called p-Sylow subgroup

Lemma 2. finite abelian group of order divided by prime number p has subgroup of order

p

Theorem 23. [p-Sylow subgroups of finite groups] finite group of order divided by

prime number p has p-Sylow subgroup

Lemma 3. [number of fixed points of group operations] for p-group H, operating

on finite set S

- number of fixed points of H is congruent to size of S modulo p, i.e.

# fixed points of H ≡ |S| (mod p)

- if H has exaxctly one fixed point, |S| ≡ 1 (mod p)

- if p divides |S|, |S| ≡ 0 (mod p)
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Sylow subgroups and solvability

Theorem 24. [solvability of finite p-groups] finite p-group is solvable; if it is non-

trivial, it has non-trivial center

Corollary 1. for non-trivial p-group, exists sequence of subgroups

{e} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn = G

where Gi is normal in G and Gi+1/Gi is cyclic group of order p

Lemma 4. [normality of subgroups of order p] for finite group G and smallest prime

number dividing order of G p, every subgroup of index p is normal

Proposition 16. [solvability of groups of order pq] group of order pq with p and q

being distinct prime numbers, is solvable

• now can prove following

– group of order, 35, is solvable - implied by Proposition 8 and Proposition 12

– group of order less than 60 is solvable
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Rings

Definition 40. [ring] set A together with two laws of composition called multiplication

and addition which are written as product and sum respectively, satisfying following

conditions, called ring

- A is commutative group with respect to addition - unit element denoted by 0

- A is monoid with respect to multiplication - unit element denoted by 1

- multiplication is distributive over addition, i.e.

(∀x, y, z ∈ A) ((x+ y)z = xz + yz & z(x+ y) = zx+ zy)

do not assume 1 ̸= 0

• can prove, e.g.,

– (∀x ∈ A) (0x = 0) because 0x+ x = 0x+ 1x = (0 + 1)x = 1x = x

– if 1 = 0, A = {0} because x = 1x = 0x = 0

– (∀x, y ∈ A) ((−x)y = −(xy)) because xy + (−x)y = (x+−x)y = 0y = 0

Definition 41. [subring] subset of ring which itself is ring with same additive and

multiplicative laws of composition, called subring
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More on ring

Definition 42. [multiplicative group of invertible elements of ring] subset U of

ring A such that every element of U has both left and right inverses, called group

of units of A or group of invertible elements of A, sometimes denoted by A∗

Definition 43. [division ring] ring with 1 ̸= 0 and every nonzero element being

invertible, called division ring

Definition 44. [commutative ring] ring A with (∀x, y ∈ A) (xy = yx), called

commutative ring

Definition 45. [center of ring] subset C ⊂ A of ring A such that

C = {a ∈ A|∀x ∈ A, xa = ax}

is subring, and is called center of ring A
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Fields

Definition 46. [field] commutative division ring, called field
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General distributivity

• general distributivity - for ring A, ⟨xi⟩ni=1 ⊂ A and ⟨yi⟩ni=1 ⊂ A(∑
xi
)(∑

yj
)

=
∑
i

∑
j

xiyj
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Ring examples

• for set S and ring A, set of all mappings of S into A Map(S,A) whose addition and

multiplication are defined as below, is ring (proof can be found in Proof 3)

(∀f, g ∈ Map(S,A)) (∀x ∈ S) ((f + g)(x) = f(x) + g(x))

(∀f, g ∈ Map(S,A)) (∀x ∈ S) ((fg)(x) = f(x)g(x))

- additive and multiplicative unit elements of Map(S,A) are constant maps whose

values are additive and multiplicative unit elements of A respectively

– Map(S,A) is commutative if and only if A is commutative

– for set S, Map(S,R) (page 23) is a commutative ring

• for abelian group M , set End(M) of group homeomorphisms of M into itself is ring

with normal addition and mapping composition as multiplication (proof can be found in

Proof 4)

- additive and multiplicative unit elements of End(M) are constant map whose value

is the unit element of M and identity mapping respectively
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– not commutative in general

• for ring A, set A[X] of polynomials over A is ring, (Definition 74)

• for field K, Kn×n, i.e., set of n-by-n matrices with components in K, is ring

–
(
Kn×n)∗, i.e., multiplicative group of units of Kn×n, consists of non-singular

matrices, i.e., those whose determinants are nonzero
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Group ring

Definition 47. [group ring] for group G and field K, set of all formal linear

combinations
∑

x∈G axx with ax ∈ K where ax are zero except finite number of

them where addition is defined normally and multiplication is defined as(∑
x∈G

axx

)∑
y∈G

byy

 =
∑
z∈G

∑
xy=z

axbyxy


called group ring, denoted by K[G]

-
∑

xy=z axby above defines what is called convolution product
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Convolution product

Definition 48. [convolution product] for two functions f, g on group G, convolution

(product), denoted by f ∗ g, defined by

(f ∗ g)(z) =
∑
xy=z

f(x)f(y)

as function on group G

- one may restrict this definition to functions which are 0 except at finite number of

elements

• for f, g ∈ L1(R), can define convolution product f ∗ g by

(f ∗ g)(x) =

∫
R
f(x− y)g(y)dy

– satisfies all axioms of ring except that there is not unit element
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– commutative (essentially because R is commutative)

• more generally, for locally compact groupG wiht Haar measure µ, can define convolution

product by

(f ∗ g)(x) =

∫
G

f(xy
−1

)g(y)dµ(y)
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Ideals of ring

Definition 49. [ideal] subset a of ring A which is subgroup of additive group of A with

Aa ⊂ a, called left ideal; indeed, Aa = a because A has 1; right ideal can be similarly

defined, i.e., aA = a; subset which is both left and right ideal, called two-sided ideal or

simply ideal

• for ring A, (0) are A itself area ideals

Definition 50. [principal ideal] for ring A and a ∈ A, left ideal Aa, called principal

left ideal

- a, said to be generator of a = Aa (over A)

Definition 51. [principal two-sided ideal] AaA, called principal two-sided ideal where

AaA =
∞⋃
i=1

{
n∑
i=1

xiayi

∣∣∣∣∣ xi, yi ∈ A

}

Lemma 5. [ideals of field] only ideals of field are the field itself and zero ideal
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Principal rings

Definition 52. [principal ring] commutative ring of which every ideal is principal and

1 ̸= 0, called principal ring

• Z (set of integers) is principal ring (proof can be found in Proof 5)

• k[X] (ring of polynomials) for field k is principal ring

• ring of algebraic integers in number field K is not necessarily principal

– let p be prime ideal, let Rp be ring of all elements a/b with a, b ∈ R and b ̸∈ p,

then Rp is principal, with one prime ideal mp consisting of all elements a/b as above

but with a ∈ p

• let A be set of entire functions on complex plane, then A is commutative ring, and

every finitely generated ideal is principal

– given discrete set of complex numbers {zi} and nonnegative integers {mi}, exists
entire function f having zeros at zi of multiplicity mi and no other zeros

– every principal ideal is of form Af for some such f

– group of units A∗ in A consists of functions having no zeros
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Ideals as both additive and multiplicative monoids

• ideals form additive monoid

– for left ideals a, b, c of ring A, a+ b is left ideal, (a+ b) + c = a+ (b+ c), hence

form additive monoid with (0) as the unit elemenet

– similarly for right ideals & two-sided ideals

• ideals form multiplicative monoid

– for left ideals a, b, c of ring A, define ab as

ab =

∞⋃
i=1

{
n∑
i=1

xiyi

∣∣∣∣∣ xi ∈ a, yi ∈ b

}

then ab is also left ideal, (ab)c = a(bc), hence form multiplicative monoid with A

itself as the unit elemenet; for this reason, this unit element A, i.e., the ring itself,

often written as (1)

– similarly for right ideals & two-sided ideals

• ideal multiplication is also distributive over addition

• however, set of ideals does not form ring (because the additive monoid is not group)
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Generators of ideal

Definition 53. [generators of ideal] for ring A and a1, . . . , an ⊂ A, set of elements

of A of form
n∑
i=1

xiai

with xi ∈ A, is left ideal, denoted by (a1, . . . , an), called generators of the left ideal;

similarly for right ideals

• above equal to smallest ideals containing ai, i.e., intersection of all ideals containing ai

∩a1,...,an∈aa

(proof can be found in Proof 6) - just like set (σ-)algebras in set theory on page 210
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Entire rings

Definition 54. [zero divisor] for ring A, x, y ∈ A with x ̸= 0, y ̸= 0, and xy = 0,

said to be zero divisors

Definition 55. [entire ring] commutative ring with no zero divisors for which 1 ̸= 0,

said to be entire; entire ring, sometimes called integral domain

Lemma 6. [every field is entire ring] every field is entire ring
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Ring-homeomorphism

Definition 56. [ring-homeomorphism] mapping of ring into ring f : A → B such

that f is monoid-homeomorphism for both additive and multiplicative structure on A and

B, i.e.,

(∀a, b ∈ A) (f(a+ b) = f(a) + f(b) & f(ab) = f(a)f(b))

and

f(1) = 1 & f(0) = 0

called ring-homeomorphism; kernel, defined to be kernel of f viewed as additive

homeomorphism

• kernel of ring-homeomorphism f : A → B is ideal of A (proof can be found in Proof 7)

• conversely, for ideal a, can construct factor ring A/a

• simply say “homeomorphism” if reference to ring is clear

Proposition 17. [injectivity of field homeomorphism] ring-homeomorphism from

field into field is injective (due to Lemma 5)
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Factor ring and canonical map

Definition 57. [factor ring and residue class] for ring A and an ideal a ⊂ A, set of

cosets x + a for x ∈ A combined with addition defined by viewing A and a as additive

groups, multiplication defined by (x+ a)(y+ a) = xy+ a, which satisfy all requirements

for ring, called factor ring or residue class ring, denoted by A/a; cosets in A/a, called

residue classes modulo a, and each coset x+ a called residue class of x modulo a

• for ring A and ideal a

– for subset S ⊂ a, write S ≡ 0 (mod a)

– for x, y ∈ A, if x− y ∈ a, write x ≡ y (mod a)

– if a = (a) for a ∈ A, for x, y ∈ A, if x− y ∈ a, write x ≡ y (mod a)

Definition 58. [canonical map of ring] ring-homeomorphism of ring A into factor ring

A/a

A → A/a

called canonical map of A into A/a
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Factor ring induced ring-homeomorphism

Proposition 18. [factor ring induced ring-homeomorphism] for ring-homeomorphism

g : A → A′ whose kernel contains ideal a, exists unique ring-homeomorphism

g∗ : A/a → A′ making diagram in the figure commutative, i.e., g∗ ◦ f = g where f is

the ring canonical map f : A → A/a

J
J
J
J
Ĵ

-










�

A A′

A/a

g

f g∗

• the ring canonical map f : A → A/a is universal in category of homeomorphisms

whose kernel contains a
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Prime ideal and maximal ideal

Definition 59. [prime ideal] for commutative ring A, ideal p ̸= A with A/p entire,

called prime ideal or just prime;

• equivalently, ideal p ̸= A is prime if and only if (∀x, y ∈ A) (xy ∈ p ⇒ x ∈ p or y ∈ p)

Definition 60. [maximal ideal] for commutative ring A, ideal m ̸= A such that

(∀ ideal a ⊂ A) (m ⊂ a ⇒ a = A)

called maximal ideal

Lemma 7. [properties of prime and maximal ideals] for commutative ring A

- every maximal ideal is prime

- every ideal is contained in some maximal ideal

- ideal {0} is prime if and only if A is entire

- ideal m is maximal if and only if A/m is field

- inverse image of prime ideal of commutative ring homeomorphism is prime
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Embedding of ring

Definition 61. [ring-isomorphism] bijective ring-homeomorphism (Definition 56) is

isomorphism

• indeed, for bijective ring-isomorphism f : A → B, exists set-theoretic inverse g : B →
A of f , which is ring-homeomorphism

Lemma 8. [image of ring-homeomorphism is subring] image f(A) of ring-homeomorphism

f : A → B is subring of B (proof can be found in Proof 8)

Definition 62. [embedding of ring] ring-isomorphism between A and its image,

established by injective ring-homeomorphism f : A → B, called embedding of ring

Definition 63. [induced injective ring-homeomorphism] for ring-homeomorphism

f : A → A′ and ideal a′ of A′, injective ring-homeomorphism

A/f
−1

(a
′
) → A

′
/a

′

called induced injective ring-homeomorphism
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Characteristic of ring

• for ring A, consider ring-homeomorphism

λ : Z → A

such that

λ(n) = ne

where e is multiplicative unit element of A

– kernel of λ is ideal (n) for some n ≥ 0, i.e., ideal generated by some nonnegative

integer n

– hence, canonical injective ring-homeomorphism Z/nZ → A, which is ring-

isomorphism between Z/nZ and subring of A

– when nZ is prime ideal, exist two cases; either n = 0 or n = p for prime number p

Definition 64. [characteristic of ring] ring A with {0} as prime ideal kernel above,

said to have characteristic 0; if prime ideal kernel is pZ for prime number p, A, said to

have characteristic p, in which case, A contains (isomorphic image of) Z/pZ as subring,

abbreviated by Fp
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Prime fields and prime rings

• field K has characteristic 0 or p for prime number p

• K contains as subfield (isomorphic image of)

– Q if characteristic is 0

– Fp if characteristic is p

Definition 65. [prime field] in above cases, bothQ and Fp, called prime field (contained

in K); since prime field is smallest subfield of K containing 1 having no automorphism

other than identity, identify it with Q or Fp for each case

Definition 66. [prime ring] in above cases, prime ring (contained in K) means either

integers Z if K has characteristic 0 or Fp if K has characteristic p
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Z/nZ

• Z is ring

• every ideal of Z is principal, i.e., either {0} or nZ for some n ∈ N (refer to page 117)

• ideal of Z is prime if and only if is pZ for some prime number p ∈ N

– pZ is maximal ideal

Definition 67. [ring of integers modulo n] Z/nZ, called ring of integers modulo n;

abbreviated as mod n

• Z/pZ for prime p is field and denoted by Fp
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Euler phi-function

Definition 68. [Euler phi-function] for n > 1, order of divison ring of Z/nZ, called
Euler phi-function, denoted by φ(n); if prime factorization of n is

n = p
e1
1 · · · perr

with distinct pi and ei ≥ 1

φ(n) = p
e1−1
1 (p1 − 1) · · · per−1

r (pr − 1)

Theorem 25. [Euler’s theorem] for x prime to n

x
φ(n) ≡ 1 (mod n)
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Chinese remainder theorem

Theorem 26. [Chinese remainder theorem] for ring A and n ideals a1, . . . an (n ≥
2) with ai + aj = A for all i ̸= j

(∀x1, . . . , xn ∈ A) (∃x ∈ A) (∀1 ≤ i ≤ n) (x ≡ xi (mod ai))

Corollary 2. [isomorphism induced by Chinese remainder theorem] for ring A, n

ideals a1, . . . an (n ≥ 2) with ai + aj = A for all i ̸= j, and map of A into

product induced by canonical maps of A onto A/ai for each factor, i.e.,

f : A →
∏

A/ai

f is surjective and Ker f =
⋂

ai, hence, exists isomorphism

A/ ∩ ai ≈
∏

A/ai
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Isomorphism of endomorphisms of cyclic groups

Theorem 27. [isomorphism of endomorphisms of cyclic groups] for cyclic group A

of order n, endomorphisms of A into A with x 7→ kx for k ∈ Z induce

- ring isomorphism

Z/nZ ≈ End(A)

- group isomorphism

(Z/nZ)∗ ≈ Aut(A)

where (Z/nZ)∗ denotes group of units of Z/nZ (Definition 42)

• e.g., for group of n-th roots of unity in C, all automorphisms are given by

ξ 7→ ξ
k

for k ∈ (Z/nZ)∗
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Irreducibility and factorial rings

Definition 69. [irreducible ring element] for entire ring A, non-unit non-zero element

a ∈ A with

(∀b, c ∈ A) (a = bc ⇒ b or c is unit)

said to be irreducible

Definition 70. [unique factorization into irreducible elements] for entire ring A,

element a ∈ A for which, exists unit u and irreducible elements, p1, . . . , pr in A

such that

a = u
∏

pi

and this expression is unique up to permutation and multiplications by units, said to have

unique factorization into irreducible elements

Definition 71. [factorial ring] entire ring with every non-zero element has unique

factorial into irreducible elements, called factorial ring or unique factorization ring
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Greatest common divisor

Definition 72. [devision of entire ring elements] for entire ring A and nonzero

elements a, b ∈ A, a said to divide b if exists c ∈ A such that ac = b, denoted

by a|b

Definition 73. [greatest common divisor] for entire ring A and a, b ∈ A, d ∈ A

which divides a and b and satisfies

(∀c ∈ A) (c|a & c|b ⇒ c|d)

called greatest common divisor (g.c.d.) of a and b

Proposition 19. [existence of greatest common divisor of principal entire rings] for

principal entire ring A and nonzero a, b ∈ A, c ∈ A with (a, b) = (c) is g.c.d. of a

and b

Theorem 28. [principal entire ring is factorial] principal entire ring is factorial
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Why (ring of) polynomials?

• lays ground work for polynomials in general

• needs polynomials over arbitrary rings for diverse purposes

– polynomials over finite field which cannot be identified with polynomial functions in

that field

– polynomials with integer coefficients; reduce them mod p for prime p

– polynomials over arbitrary commutative rings

– rings of polynomial differential operators for algebraic geometry & analysis

• e.g., ring learning with errors (RLWE) for cryptographic algorithms
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Ring of polynomials

• exist many ways to define polynomials over commutative ring; here’s one

Definition 74. [polynomial] for ring A, set of functions from monoid S = {Xr|r ∈
Z, r ≥ 0} into A which are equal to 0 except finite number of elements of S, called

polynomials over A, denoted by A[X]

• for every a ∈ A, define function which has value a on Xn, and value 0 for every other

element of S, by aXr

• then, a polynomial can be uniquely written as

f(X) = a0X
0
+ · · · + anX

n

for some n ∈ Z+, ai ∈ A

• ai, called coefficients of f
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Polynomial functions
Definition 75. [polynomial function] for two rings A and B with A ⊂ B and f ∈
A[X] with f(X) = a0 + a1X + · · · + anX

n, map fB : B → B defined by

fB(x) = a0 + a1x+ · · · + anx
n

called polynomial function associated with f(X)

Definition 76. [evaluation homeomorphism] for two rings A and B with A ⊂ B and

b ∈ B, ring homeomorphism from A[X] into B with association, evb : f 7→ f(b),

called evaluation homeomorphism, said to be obtained by substituting b for X in f

• hence, for x ∈ B, subring A[x] of B generated by x over A is ring of all polynomial

values f(x) for f ∈ A[X]

Definition 77. [variables and transcendentality] for two rings A and B with A ⊂ B,

if x ∈ B makes evaluation homeomorphism evx : f 7→ f(x) isomorphic, x, said to be

transcendental over A or variable over A

• in particular, X is variable over A
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Polynomial examples

• consider α =
√
2 and {a+ bα |a, b ∈ Z}, subring of Z[α] ⊂ R generated by α.

– α is not transcendental because f(α) = 0 for f(X) = X2 − 1

– hence kernel of evaluation map of Z[X] into Z[α] is not injective, hence not

isomorphism

– indeed

Z[α] = {a+ bα |a, b ∈ Z}

• consider Fp for prime number p

– f(X) = Xp−X ∈ Fp[X] is not zero polynomial, but because xp−1 ≡ 1 for every

nonzero x ∈ Fp by Theorem 25 (Euler’s theorem), xp ≡ x for every x ∈ Fp, thus
for polynomial function, fFp, fFp(x) = 0 for every x in Fp

– i.e., non-zero polynomial induces zero polynomial function
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Reduction map

• for homeomorphism φ : A → B of commutative rings, exists associated

homeomorphisms of polynomial rings A[X] → B[X] such that

f(X) =
∑

aiX
i 7→

∑
φ(ai)X

i
= (φf)(X)

Definition 78. [reduction map] above ring homeomorphism f 7→ φf , called reduction

map

• e.g., for complex conjugate φ : C → C, homeomorphism of C[X] into itself can be

obtained by reduction map f 7→ φf , which is complex conjugate of polynomials with

complex coefficients

Definition 79. [reduction of f modulo p] for prime ideal p of ring A and surjective

canonical map φ : A → A/p, reduction map φf for f ∈ A[X], sometimes called

reduction of f modulo p
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Basic properties of polynomials in one variable

Theorem 29. [Euclidean algorithm] for set of all polynomials in one variable of

nonnegative degrees A[X] with commutative ring A

(∀f, g ∈ A[X] with leading coefficients of g unit in A)

(∃q, r ∈ A[X] with deg r < deg g) (f = qg + r)

Theorem 30. [principality of polynomial ring] polynomial ring in one variable k[X]

with field k is principal

Corollary 3. [factoriality of polynomial ring] polynomial ring in one variable k[X]

with field k is factorial
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Constant, monic, and irreducible polynomials

Definition 80. [constant and monic polynomials] k ∈ k[X] with field k, called

constant polynomial; f(x) ∈ k[X] with leading coefficient 1, called monic polynomial

Definition 81. [irreducible polynomials] polynomial f(x) ∈ k[X] such that

(∀g(X), h(X) ∈ k[X]) (f(X) = g(X)h(X) ⇒ g(X) ∈ k or h(X) ∈ k)

said to be irreducible
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Roots or zeros of polynomials

Definition 82. [root of polynomial] for commutative ring B, its subring A ⊂ B, and

f(x) ∈ A[X] in one variable, b ∈ B satisfying

f(b) = 0

called root or zero of f

Theorem 31. [number of roots of polynomial] for field k, polynomial f ∈ k[X] in

one variable of degree n ≥ 0 has at most n roots in k; if a is root of f in k, X − a

divides f(X)
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Induction of zero functions

Corollary 4. [induction of zero function in one variable] for field k and infinite

subset T ⊂ k, if polynomial f ∈ k[X] in one variable over k satisfies

(∀a ∈ k) (f(a) = 0)

then f(0) = 0, i.e., f induces zero function

Corollary 5. [induction of zero function in multiple variables] for field k and n

infinite subsets of k, ⟨Si⟩ni=1, if polynomial in n variables over field k satisfies

(∀ai ∈ Si for 1 ≤ i ≤ n) (f(a1, . . . , an) = 0)

then f = 0, i.e., f induces zero function

Corollary 6. [induction of zero functions in multiple variables - infinite fields] if

polynomial in n variables over infinite field k induces zero function in k(n), f = 0

Corollary 7. [induction of zero functions in multiple variables - finite fields] if polynomial

in n variables over finite field k of order q, degree of which in each variable is less than q,

induces zero function in k(n), f = 0
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Reduced polynomials and uniqueness

• for field k with q elements, polynomial in n variables over k can be expressed as

f(X1, . . . , Xn) =
∑

aiX
νi,1
1 · · ·X

νi,n
n

for finite sequence, ⟨ai⟩mi=1, and ⟨νi,1⟩mi=1, . . . , ⟨νi,n⟩
m
i=1 where ai ∈ k and νi,j ≥ 0

• because Xq
i = Xi for any Xi, any νi,j ≥ q can be (repeatedly) replaced by

νi,j − (q − 1), hence f can be rewritten as

f(X1, . . . , Xn) =
∑

aiX
µi,1
1 · · ·X

µi,n
n

where 0 ≤ µi,j < q for all i, j

Definition 83. [reduced polynomials] above polynomial, called reduced polynomial,

denoted by f∗

Corollary 8. [uniqueness of reduced polynomials] for field k with q elements, reduced

polynomial is unique (by Corollary 7)

Searching for Universal Truths - Abstract Algebra - Polynomials 144



Sunghee Yun August 4, 2025

Multiplicative subgroups and n-th roots of unity

Definition 84. [multiplicative subgroup of field] for field k, subgroup of group k∗ =

k ∼ {0}, called multiplicative subgroup of k

Theorem 32. [finite multiplicative subgroup of field is cyclic] finite multiplicative

subgroup of field is cyclic

Corollary 9. [multiplicative subgroup of finite field is cyclic] multiplicative subgroup

of finite field is cyclic

Definition 85. [primitive n-th root of unity] generator for group of n-th roots of

unity, called primitive n-th root of unity; group of roots of unity, denoted by µ; group of

roots of unity in field k, denoted by µ(k)
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Algebraic closedness

Definition 86. [algebraically closed] field k, for which every polynomial in k[X] of

positive degree has root in k, said to be algebraically closed

• e.g., complex numbers are algebraically closed

• every field is contained in some algebraically closed field (Theorem 33)

• for algebraically closed field k

– (of course) every irreducible polynomial in k[X] is of degree 1

– unique factorization of polynomial of nonnegative degree can be written in form

f(X) = c

r∏
i=1

(X − αi)
mi

with nonzero c ∈ k, distinct roots, α1, . . . , αr ∈ k, and m1, . . . ,mr ∈ N
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Derivatives of polynomials

Definition 87. [derivative of polynomial over commutative ring] for polynomial

f(X) = anX
n + · · · + a1X + a0 ∈ A[X] with commutative ring A, map

D : A[X] → A[X] defined by

Df(X) = nanX
n−1

+ · · · + a1

called derivative of polynomial, denoted by f ′(X);

• for f, g ∈ A[X] with commutative ring A, and a ∈ A

(f + g)
′
= f

′
+ g

′
and (fg)

′
= f

′
g + fg

′
and (af)

′
= af

′
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Multiple roots and multiplicity

• nonzero polynomial f(X) ∈ k[X] in one variable over field k having a ∈ k as root

can be written of form

f(X) = (X − a)
m
g(X)

with some polynomial g(X) ∈ A[X] relatively prime to (X − a) (hence, g(a) ̸= 0)

Definition 88. [multiplicity and multiple roots] above, m, called multiplicity of a in

f ; a, said to be multiple root of f if m > 1

Proposition 20. [necessary and sufficient condition for multiple roots] for polynomial

f of one variable over field k, a ∈ k is multiple root of f if and only if f(a) = 0 and

f ′(a) = 0

Proposition 21. [derivative of polynomial] for polynomial f ∈ K[X] over fieldK of

positive degree, f ′ ̸= 0 if K has characteristic 0; if K has characteristic p > 0, f ′ = 0

if and only if

f(X) =

n∑
ν=1

aνX
ν

where p divides each integer ν whenever aν ̸= 0
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Frobenius endomorphism

• homeomorphism of K into itself x 7→ xp has trivial kernel, hence injective

• hence, iterating r ≥ 1 times yields endomorphism, x 7→ xp
r

Definition 89. [Frobenius endomorphism] for field K, prime number p, and r ≥ 1,

endomorphism of K into itself, x 7→ xp
r
, called Frobenius endomorphism
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Roots with multiplicity pr in fields having characteristic p

• for field K having characteristic p

– p|
(p
ν

)
for all 0 < ν < p because p is prime, hence, for every a, b ∈ K

(a+ b)
p
= a

p
+ b

p

– applying this resurvely r times yields

(a+ b)
pr

= (a
p
+ b

p
)
pr−1

= (a
p2

+ b
p2
)
pr−2

= · · · = a
pr

+ b
pr

hence

(X − a)
pr

= X
pr − a

pr

– if a, c ∈ K satisfy ap
r
= c

X
pr − c = X

pr − a
pr

= (X − a)
pr

hence, polynomial Xpr − c has precisely one root a of multiplicity pr!
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Algebraic extension

• will show

– for polynomial over field, always exists some extension of that field where the

polynomial has root

– existence of algebraic closure for every field

Searching for Universal Truths - Abstract Algebra - Algebraic Extension 152



Sunghee Yun August 4, 2025

Extension of field

Definition 90. [extension of field] for field E and its subfield F ⊂ E, E said to be

extension field of F , (sometimes) denoted by E/F (which should not confused with

factor group)

- can view E as vector space over F

- if dimension of the vector space is finite, extension called finite extension of F

- if infinite, called infinite extension of F
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Algebraic over field

Definition 91. [algebraic over field] for field E and its subfield F ⊂ E, α ∈ E

satisfying

(∃a0, . . . , an with not all ai zero) (a0 + a1α+ · · · + anα
n
= 0)

said to be algebraic over F

- for algebraic α ̸= 0, can always find such equation like above that a0 ̸= 0

• equivalent statements to Definition 91

– exists homeomorphism φ : F [X] → E such that

(∀x ∈ F ) (φ(x) = x) & φ(X) = α & Kerφ ̸= {0}

– exists evaluation homeomorphism evα : F [X] → E with nonzero kernel (refer to

Definition 76 for definition of evaluation homeomorphism)
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• in which case, Kerφ is principal ideal (by Theorem 30), hence generated by single

element, thus exists nonzero p(X) ∈ F [X] (with normalized leading coefficient being

1) so that

F [X]/(p(X)) ≈ F [α]

• F [α] entire (Lemma 6), hence p(X) irreducible (refer to Definition 59)

Definition 92. [THE irreducible polynomial] normalized p(X) (i.e., with leading

coefficient being 1) uniquely determined by α, called THE irreducible polynomial of

α over F , denoted by Irr(α, F,X)
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Algebraic extensions

Definition 93. [algebraic extension] for field F , its extension field every element of

which is algebraic over F , said to be algebraic extension of F

Proposition 22. [algebraicness of finite field extensions] for field F , every finite

extension field of F is algebraic over F

• converse is not true, e.g., subfield of complex numbers consisting of algebraic numbers

over Q is infinite extension of Q
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Dimension of extensions

Definition 94. [dimension of extension] for field F and its extension field E,

dimension of E as vector space over F , called dimension of E over F , denoted by

[E : F ]

Proposition 23. [dimension of finite extension] for field k and its extension fields F

and E with k ⊂ F ⊂ E

[E : k] = [E : F ][F : k]

- if ⟨xi⟩i∈I is basis for F over k, and ⟨yj⟩j∈J is basis for E over F , ⟨xiyj⟩(i,j)∈I×J
is basis for E over k

Corollary 10. [finite dimension of extension] for field k and its extension fields F &

E with k ⊂ F ⊂ E, E/k is finite if and only if both F/k and E/F are finite
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Generation of field extensions

Definition 95. [generation of field extensions] for field k, its extension field E, and

α1, . . . , αn ∈ E, smallest subfield containing k and α1, . . . , αn, said to be finitely

generated over k by α1, . . . , αn, denoted by k(α1, . . . , αn)

• k(α1, . . . , αn) consists of all quotients f(α1, . . . , αn)/g(α1, . . . , αn) where f, g ∈
k[X] and g(α1, . . . , αn) ̸= 0, i.e.

k(α1, . . . , αn)

= {f(α1, . . . , αn)/g(α1, . . . , αn) |f, g ∈ f [X], g(α1, . . . , αn) ̸= 0}

• any field extension E over k is union of smallest subfields containing α1, . . . , αn where

α1, . . . , αn range over finite set of elements of E, i.e.

E =
⋃
n∈N

⋃
α1,...,αn∈E

k(α1, . . . , αn)

Proposition 24. [finite extension is finitely generated] every finite extension of field

is finitely generated
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Tower of fields

Definition 96. [tower of fields] sequence of extension fields

F1 ⊂ F2 ⊂ · · · ⊂ Fn

called tower of fields

Definition 97. [finite tower of fields] tower of fields, said to be finite if and only if

each step of extensions is finite
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Algebraicness of finitely generated subfields

Proposition 25. [algebraicness of finitely generated subfield by single element] for

field k, its extension field E, and α ∈ E being algebraic over k

k(α) = k[α]

and

[k(α) : k] = deg Irr(α, k,X)

hence k(α) is finite extension of k, thus algebraic extension over k (by Proposition 22)

Lemma 9. [a fortiori algebraicness] for field k, its extension field F , and α ∈ E being

algebraic over k where k(α) and F are subfields of common field, α is algebraic over F

- indeed, Irr(α, k,X) has a fortiori coefficients in F
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• assume tower of fields

k ⊂ k(α1) ⊂ k(α1, α2) ⊂ · · · ⊂ k(α1, . . . , αn)

where αi is algebraic over k

• then, αi+1 is algebraic over k(α1, . . . , αi) (by Lemma 9)

Proposition 26. [algebraicness of finitely generated subfields by multiple elements]
for field k and α1, . . . , αn being algebraic over k, E = k(α1, . . . , αn) is finitely

algebraic over k (due to Proposition 25, Proposition 23, and Proposition 22). Indeed,

E = k[α1, . . . , αn] and

[k(α1, . . . , αn) : k] = deg Irr(α1, k,X) deg Irr(α2, k(α1), X)

· · · deg Irr(αn, k(α1, . . . , αn−1), X),

(proof can be found in Proof 9)

Searching for Universal Truths - Abstract Algebra - Algebraic Extension 161



Sunghee Yun August 4, 2025

Compositum of subfields and lifting

Definition 98. [compositum of subfields] for field k and its extension fields E and F ,

which are subfields of common field L, smallest subfield of L containing both E and F ,

called compositum of E and F in L, denoted by EF

! cannot define compositum if E and F are not embedded in common field L

• could define compositum of set of subfields of L as smallest subfield containing subfields

in the set

Lemma 10. extension E of k is compositum of all its finitely generated subfields over

k, i.e., E =
⋃
n∈N

⋃
α1,...,αn∈E

k(α1, . . . , αn)

Searching for Universal Truths - Abstract Algebra - Algebraic Extension 162



Sunghee Yun August 4, 2025

Lifting

Definition 99. [lifting] extension EF of F , called translation of E to F or lifting of

E to F

- often draw diagram as in the figure

�
�
�
�
�
�
�
�

k

F

HHHHE
�
�
�
�
�
�
�
� HH

HH
EF
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Finite generation of compositum

Lemma 11. [finite generation of compositum] for field k, its extension field F , and

E = k(α1, . . . , αn) where both E and F are contained in common field L,

EF = F (α1, . . . , αn)

i.e., compositum EF is finitely generated over F (proof can be found in Proof 10)

- refer to diagra in the figure
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EF = F (α1, . . . , αn)
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Distinguished classes

Definition 100. [distinguished class of field extensions] for field k, class C of

extension fields satisfying

- for tower of fields k ⊂ F ⊂ E, extension k ⊂ E is in C if and only if both k ⊂ F

and F ⊂ E are in C
- if k ⊂ E is in C, F is any extension of k, and both E and F are subfields of

common field, then F ⊂ EF is in C
said to be distinguished; the figure illustrates these two properties, which imply the

following property

- if k ⊂ F and k ⊂ E are in C and both E and F are subfields of common field,

k ⊂ EF is in C

k
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Both algebraic and finite extensions are distinguished

Proposition 27. [algebraic and finite extensions are distinguished] class of algebraic

extensions is distinguished, so is class of finite extensions

• true that finitely generated extensions form distinguished class (not necessarily algebraic

extensions or finite extensions)
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Field embedding and embedding extension

Definition 101. [field embedding] for two fields F and L, injective homeomorphism

σ : F → L, called embedding of F into L; then (of course) σ induces isomorphism of

F with its image σF 1

Definition 102. [field embedding extension] for field embedding σ : F → L, field

extension F ⊂ E, and embedding τ : E → L whose restriction to F being equal to σ,

said to be over σ or extend σ; if σ is identity, embedding τ , called embedding of E over

F ; diagrams in the figure show these embedding extensions

-

6 6

-

F L

E L

σ

inc id

τ

J
J

J
J]

-








�

A A′

A/a

τ

inc id

• assuming F , E, σ, and τ same as in Definition 102, if α ∈ E is root of f ∈ F [X],

then ατ is root of fσ for if f(X) =
∑n

i=0 aiX
i, then f(α) =

∑n
i=0 aiα

i = 0, and

0 = f(α)τ =
∑n

i=0(a
τ
i )(α

τ)i =
∑n

i=0 a
σ
i (α

τ)i = fσ(ατ)

1Here σF is sometimes written as Fσ.
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Embedding of field extensions

Lemma 12. [field embedding of algebraic extension] for field k and its algebraic

extension E, embedding of E into itself over k is isomorphism

Lemma 13. [compositums of fields] for field k and its field extensions E and F

contained in common field,

E[F ] = F [E] =

∞⋃
n=1

{e1f1 + · · · + enfn |ei ∈ E, fi ∈ F }

and EF is field of quotients of these elements

Lemma 14. [embeddings of compositum of fields] for field k, its field extensions E1

and E2 contained in commen field E, and embedding σ : E → L for field L,

σ(E1E2) = σ(E1)σ(E2)
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Existence of roots of irreducible polynomial

• assume p(X) ∈ k[X] irreducible polynomial and consider canonical map, which is ring

homeomorphism

σ : k[X] → k[X]/((p(X))

• consider Kerσ|k
– every kernel of ring homeomorphism is ideal, hence if nonzero a ∈ Kerσ|k,

1 ∈ Kerσ|k because a−1 ∈ Kerσ|k, but 1 ̸∈ (p(X))

– thus, Kerσ|k = {0}, hence pσ ̸= 0

• now for α = Xσ

p
σ
(α) = p

σ
(X

σ
) = (p(X))

σ
= 0

• thus, α is algebraic in kσ, i.e., α ∈ k[X]σ is root of pσ in kσ(α)

Lemma 15. [existence of roots of irreducible polynomial] for field k and irreducible

p(X) ∈ k[X] with deg p ≥ 1, exist field L and homeomorphism σ : k → L such that

pσ with deg pσ ≥ 1 has root in field extension of kσ
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Existence of algebraically closed algebraic field extensions

Proposition 28. [existence of extension fields containing roots] for field k and f ∈
k[X] with deg f ≥ 1, exists extension of k in which f has root

Corollary 11. [existence of extension fields containing roots] for field k and f1,

. . . , fn ∈ k[X] with deg fi ≥ 1, exists extension of k in which every fi has root

Theorem 33. [existence of algebraically closed field extensions] for every field k,

exists algebraically closed extension of k

Corollary 12. [existence of algebraically closed algebraic field extensions] for every

field k, exists algebraically closed algebraic extension of k (proof can be found in Proof 11)
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Isomorphism between algebraically closed algebraic extensions

Proposition 29. [number of algebraic embedding extensions] for field, k, α being

algebraic over k, algebraically closed field, L, and embedding, σ : k → L, # possible

embedding extensions of σ to k(α) in L is equal to # distinct roots of Irr(α, k,X),

hence no greater than # roots of Irr(α, k,X)

Theorem 34. [algebraic embedding extensions] for field, k, its algebraic extensions,

E, algebraically closed field, L, and embedding, σ : k → L, exists embedding extension

of σ to E in L; if E is algebraically closed and L is algebraic over kσ, every such

embedding extension is isomorphism of E onto L

Corollary 13. [isomorphism between algebraically closed algebraic extensions] for field,

k, and its algebraically closed algebraic extensions, E and E′, exists isomorphism bewteen

E and E′ which induces identity on k, i.e.

τ : E → E
′

where τ |k is identity

• thus, algebraically closed algebraic extension is determined up to isomorphism
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Algebraic closure

Definition 103. [algebraic closure] for field, k, algebraically closed algebraic extension

of k, which is determined up to isomorphism, called algebraic closure of k, frequently

denoted by ka

• examples

– complex conjugation is automorphism of C (which is the only continuous

automorphism of C)
– subfield of C consisting of all numbers which are algebraic over Q is algebraic closure

of Q, i.e., Qa

– Qa ̸= C
– Ra = C
– Qa is countable

Theorem 35. [countability of algebraic closure of finite fields] algebraic closure of

finite field is countable

Theorem 36. [cardinality of algebraic extensions of infinite fields] for infinite field,

k, every algebraic extension of k has same cardinality as k
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Splitting fields

Definition 104. [splitting fields] for field, k, and f ∈ k[X] with deg f ≥ 1, field

extension, K, of k, f splits into linear factors in which, i.e.,

f(X) = c(X − α1) · · · (X − αn)

and which is finitely generated over k by α1, . . . , αn (hence K = k(α1, . . . , αn)),

called splitting field of f

• for field, k, every f ∈ k[X] has splitting field in ka

Theorem 37. [isomorphism between splitting fields] for field, k, f ∈ k[X] with

deg f ≥ 1, and two splitting fields of f , K and E, exists isomorphism between K and

E; if k ⊂ K ⊂ ka, every embedding of E into ka over k is isomorphism of E onto K
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Splitting fields for family of polynomials

Definition 105. [splitting fields for family of polynomials] for field, k, index set, Λ,

and indexed family of polynomials, {fλ ∈ k[X]|λ ∈ Λ, deg fλ ≥ 1}, extension field of

k, every fλ splits into linear factors in which and which is generated by all roots of all

polynomials, fλ, called splitting field for family of polynomials

• in most applications, deal with finite Λ

• becoming increasingly important to consider infinite algebraic extensions

• various proofs would not be simpler if restricted ourselves to finite cases

Corollary 14. [isomorphism between splitting fields for family of polynomials] for field,

k, index set, Λ, and two splitting fields, K and E, for family of polynomials,

{fλ ∈ k[X]|λ ∈ Λ, deg fλ ≥ 1}, every embedding of E intoKa over k is isomorphism

of E onto K
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Normal extensions

Theorem 38. [normal extensions] for field, k, and its algebraic extension, K, with

k ⊂ K ⊂ ka, following statements are equivalent

- every embedding of K into ka over k induces automorphism

- K is splitting field of family of polynomials in k[X]

- every irreducible polynomial of k[X] which has root in K splits into linear factors in

K

Definition 106. [normal extensions] for field, k, and its algebraic extension, K, with

k ⊂ K ⊂ ka, satisfying properties in Theorem 38, said to be normal

• not true that class of normal extensions is distinguished

– e.g., below tower of fields is tower of normal extensions

Q ⊂ Q(
√
2) ⊂ Q(

4√
2)

– but, extension Q ⊂ Q( 4√2) is not normal because complex roots of X4 − 2 are not

in Q( 4√2)
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Retention of normality of extensions

Theorem 39. [retention of normality of extensions] normal extensions remain normal

under lifting; if k ⊂ E ⊂ K and K is normal over k, K is normal over E; if K1 and

K2 are normal over k and are contained in common field, K1K2 is normal over k, and so

is K1 ∩K2
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Separable degree of field extensions

• for field, F , and its algebraic extension, E

– let L be algebraically closed field and assume embedding, σ : F → L

- exists embedding extension of σ to E in L by Theorem 34

- such σ maps E on subfield of L which is algebraic over F σ

- hence, Eσ is contained in algebraic closure of F σ which is contained in L

- will assume that L is the algebraic closure of F σ

– let L′ be another algebraically closed field and assume another embedding,

τ : F → L′ - assume as before that L′ is algebraic closure of F τ

– then Theorem 34 implies, exists isomorphism, λ : L → L′ extending τ ◦ σ−1

applied to F σ

– let Sσ & Sτ be sets of embedding extensions of σ to E in L and L′ respectively

– then λ induces map from Sσ into Sτ with σ̃ 7→ λ ◦ σ̃ and λ−1 induces inverse

map from Sτ into Sσ, hence exists bijection between Sσ and Sτ , hence have same

cardinality

Definition 107. [separable degree of field extensions] above cardinality only depends

on extension E/F , called separable degree of E over F , denoted by [E : F ]s
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Multiplicativity of and upper bound on separable degree of field
extensions

Theorem 40. [multiplicativity of separable degree of field extensions] for tower of

algebraic field extensions, k ⊂ F ⊂ E,

[E : k]s = [E : F ]s[F : k]s

Theorem 41. [upper limit on separable degree of field extensions] for finite algebraic

field extension, k ⊂ E

[E : k]s ≤ [E : k]

• i.e., separable degree is at most equal to degree (i.e., dimension) of field extension

Corollary 15. for tower of algebraic field extensions, k ⊂ F ⊂ E, with [E : k] < ∞

[E : k]s = [E : k]

holds if and only if corresponding equality holds in every step of tower, i.e., for E/F and

F/k
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Finite separable field extensions

Definition 108. [finite separable field extensions] for finite algebraic field extension,

E/k, with [E : k]s = [E : k], E, said to be separable over k

Definition 109. [separable algebraic elements] for field, k, α, which is algebraic over

k with k(α) being separable over k, said to be separable over k

Proposition 30. [separability and multiple roots] for field, k, α, which is algebraic

over k, is separable over k if and only if Irr(α, k,X) has no multiple roots

Definition 110. [separable polynomials] for field, k, f ∈ k[X] with no multiple roots,

said to be separable

Lemma 16. for tower of algebraic field extensions, k ⊂ F ⊂ K, if α ∈ K is separable

over k, then α is separable over F

Theorem 42. [finite separable field extensions] for finite field extension, E/k, E is

separable over k if and only if every element of E is separable over k
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Arbitrary separable field extensions

Definition 111. [arbitrary separable field extensions] for (not necessarily finite) field

extension, E/k, E, of which every finitely generated subextension is separable over k,

i.e.,

(∀n ∈ N & α1, . . . , αn ∈ E) (k(α1, . . . , αn) is separable over k)

said to be separable over k

Theorem 43. [separable field extensions] for algebraic extension, E/k, E, which is

generated by family of elements, {αλ}λ∈Λ, with every αλ is separable over k, is separable

over k

Theorem 44. [separable extensions are distinguished] separable extensions form

distinguished class of extensions
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Separable closure and conjugates

Definition 112. [separable closure] for field, k, compositum of all separable extensions

of k in given algebraic closure ka, called separable closure of k, denoted by ks or ksep

Definition 113. [conjugates of fields] for algebraic field extension, E/k, and

embedding of E, σ, in ka over k, Eσ, called conjugate of E in ka

• smallest normal extension of k containing E is compositum of all conjugates of E in

Ea

Definition 114. [conjugates of elements of fields] for field, k, α being algebraic over

k, and distinct embeddings, σ1, . . . , σr of k(α) into ka over k, ασ1, . . . , ασr, called

conjugates of α in ka

• ασ1, . . . , ασr are simply distinct roots of Irr(α, k,X)

• smallest normal extension of k containing one of these conjugates is simply

k(ασ1, . . . , ασr)
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Prime element theorem

Theorem 45. [prime element theorem] for finite algebraic field extension, E/k, exists

α ∈ E such that E = k(α) if and only if exists only finite # fields, F , such that

k ⊂ F ⊂ E; if E is separable over k, exists such element, α

Definition 115. [primitive element of fields] for finite algebraic field extension, E/k,

α ∈ E with E = k(α), called primitive element of E over k
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Finite fields

Definition 116. [finite fields] for every prime number, p, and integer, n ≥ 1, exists

finite field of order pn, denoted by Fpn, uniquely determined as subfield of algebraic

closure, Fp
a, which is splitting field of polynomial

fp,n(X) = X
pn −X

and whose elements are roots of fp,n

Theorem 46. [finite fields] for every finite field, F , exist prime number, p, and integer,

n ≥ 1, such that F = Fpn

Corollary 16. [finite field extensions] for finite field, Fpn, and integer, m ≥ 1, exists

one and only one extension of degree, m, which is Fpmn

Theorem 47. [multiplicative group of finite field] multiplicative group of finite field

is cyclic
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Automorphisms of finite fields

Definition 117. [Frobenius mapping] mapping

φp,n : Fpn → Fpn

defined by x 7→ xp, called Frobenius mapping

• φp,n is (ring) homeomorphism with Kerφp,n = {0} since Fpn is field, thus is injective

(Proposition 17), and surjective because Fpn is finite,

• thus, φp,n is isomorphism leaving Fp fixed

Theorem 48. [group of automorphisms of finite fields] group of automorphisms of

Fpn is cyclic of degree n, generated by φp,n

Theorem 49. [group of automorphisms of finite fields over another finite field] for

prime number, p, and integers, m,n ≥ 1, in any Fp
a, Fpn is contained in Fpm if and

only if n divides m, i.e., exists d ∈ Z such that m = dn, in which case, Fpm is normal

and separable over Fpn group of automorphisms of Fpm over Fpn is cyclic of order, d,

generated by φnp,m
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What we will do to appreciate Galois theory

• study

– group of automorphisms of finite (and infinite) Galois extension (at length)

– give examples, e.g., cyclotomic extensions, abelian extensions, (even) non-abelian

ones

– leading into study of matrix representation of Galois group & classifications

• have tools to prove

– fundamental theorem of algebra

– insolvability of quintic polynomials

• mention unsolved problems

– given finite group, exists Galois extension of Q having this group as Galois group?
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Fixed fields

Definition 118. [fixed field] for field, K, and group of automorphisms, G, of K,

{x ∈ K|∀σ ∈ G, x
σ
= x} ⊂ K

is subfield of K, and called fixed field of G, denoted by KG

• KG is subfield of K because for every x, y ∈ KG

– 0σ = 0 ⇒ 0 ∈ KG

– (x+ y)σ = xσ + yσ = x+ y ⇒ x+ y ∈ KG

– (−x)σ = −xσ = −x ⇒ −x ∈ KG

– 1σ = 1 ⇒ 1 ∈ KG

– (xy)σ = xσyσ = xy ⇒ xy ∈ KG

– (x−1)σ = (xσ)−1 = x−1 ⇒ x−1 ∈ KG

hence, KG closed under addition & multiplication, and is commutative division ring,

thus field

• 0, 1 ∈ KG, hence KG contains prime field
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Galois extensions and Galois groups

Definition 119. [Galois extensions] algebraic extension, K, of field, k, which is normal

and separable, said to be Galois (extension of k) or Galois over k considering K as

embedded in ka; for convenience, sometimes say K/k is Galois

Definition 120. [Galois groups] for field, k and its Galois extension, K, group of

automorphisms of K over k, called Galois group of K over k, denoted by G(K/k),

GK/k, Gal(K/k), or (simply) G

Definition 121. [Galois group of polynomials] for field, k, separable f ∈ k[X] with

deg f ≥ 1, and its splitting field, K/k, Galois group of K over k (i.e., G(K/k)), called

Galois group of f over k

Proposition 31. [Galois group of polynomials and symmetric group] for field, k,

separable f ∈ k[X] with deg f ≥ 1, and its splitting field, K/k,

f(X) = (X − α1) · · · (X − αn)

elements of Galois group of f over k, G, permute roots of f , hence, exists injective

homeomorphism of G into Sn, i.e., symmetric group on n elements
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Fundamental theorem for Galois theory

Theorem 50. [fundamental theorem for Galois theory] for finite Galois extension,

K/k

- map H 7→ KH induces isomorphism between set of subgroups of G(K/k) & set of

intermediate fields

- subgroup, H, of G(K/k), is normal if and only if KH/k is Galois

- for normal subgroup, H, σ 7→ σ|KH induces isomorphism between G(K/k)/H

and G(KH/k)

(illustrated in the figure)

• shall prove step by step
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Galois subgroups association with intermediate fields

Theorem 51. [Galois subgroups associated with intermediate fields - 1] for Galois

extension, K/k, and intermediate field, F

- K/F is Galois & KG(K/F ) = F , hence, KG = k

- map

F 7→ G(K/F )

induces injective homeomorphism from set of intermediate fields to subgroups of G

(proof can be found in Proof 12)

Definition 122. [Galois subgroups associated with intermediate fields] for Galois

extension, K/k, and intermediate field, F , subgroup, G(K/F ) ⊂ G(K/k), called

group associated with F , said to belong to F

Corollary 17. [Galois subgroups associated with intermediate fields - 1] for Galois

extension, K/k, and two intermediate fields, F1 and F2, G(K/F1)∩G(K/F2) belongs

to F1F2, i.e.,

G(K/F1) ∩G(K/F2) = G(K/F1F2)

(proof can be found in Proof 13)
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Corollary 18. [Galois subgroups associated with intermediate fields - 2] for Galois

extension, K/k, and two intermediate fields, F1 and F2, smallest subgroup of G

containing G(K/F1) and G(K/F2) belongs to F1 ∩ F2, i.e.⋂
G(K/F1)⊂H,G(K/F2)⊂H

{H|H ⊂ G(K/k)} = G(K/(F1 ∩ F2))

Corollary 19. [Galois subgroups associated with intermediate fields - 3] for Galois

extension, K/k, and two intermediate fields, F1 and F2,

F1 ⊂ F2 if and only if G(K/F2) ⊂ G(K/F1)

(proof can be found in Proof 14)

Corollary 20. for finite separable field extension, E/k, the smallest normal extension of

k containing E, K, K/k is finite Galois and exist only finite number of intermediate fields

Lemma 17. for algebraic separable extension, E/k, if every element of E has degree

no greater than n over k for some n ≥ 1, E is finite over k and [E : k] ≤ n

Searching for Universal Truths - Abstract Algebra - Galois Theory 192



Sunghee Yun August 4, 2025

Theorem 52. [Artin’s theorem] (Artin) for field, K, finite Aut(K) of order, n, and

k = KAut(K), K/k is Galois, G(K/k) = Aut(K), and [K : k] = n

Corollary 21. [Galois subgroups associated with intermediate fields - 4] for finite

Galois extension, K/k, every subgroup of G(K/k) belongs to intermediate field

Theorem 53. [Galois subgroups associated with intermediate fields - 2] for Galois

extension, K/k, and intermediate field, F ,

- F/k is normal extension if and only if G(K/F ) is normal subgroup of G(K/k)

- if F/k is normal extension, map, σ 7→ σ|F , induces homeomorphism of G(K/k)

onto G(F/k) of which G(K/F ) is kernel, thus

G(F/k) ≈ G(K/k)/G(K/F )
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Proof for fundamental theorem for Galois theory

• finally, we prove fundamental theorem for Galois theory (Theorem 50)

• assume K/k is finite Galois extension and H is subgroup of G(K/k)

– Corollary 21 implies KH is intermediate field, hence Theorem 51 implies K/KH is

Galois, Theorem 52 implies G(K/KH) = H, thus, every H is Galois

– map, H 7→ KH, induces homeomorphism, σ, of set of all subgroups of G(K/k)

into set of intermediate fields

– σ is injective since for any two subgroups, H and H ′, of G(K/k), if KH = KH′
,

then H = G(K/KH) = G(K/KH′
) = H ′

– σ is surjective since for every intermediate field, F , Theorem 51 implies K/F

is Galois, G(K/F ) is subgroup of G(K/k), and KG(K/F ) = F , thus,

σ(G(K/F )) = KG(K/F ) = F

– therefore, σ is isomorphism between set of all subgroups of G(K/k) and set of

intermediate fields

– since Theorem 44 implies separable extensions are distinguished, HK/k is separable,

thus Theorem 53 implies that KH/k is Galois if and only if G(K/KH) is normal

– lastly, Theorem 53 implies that if KH/k is Galois, G(HK/k) ≈ G(K/k)/H
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Abelian and cyclic Galois extensions and groups

Definition 123. [abelian Galois extensions] Galois extension with abelian Galois group,

said to be abelian

Definition 124. [cyclic Galois extensions] Galois extension with cyclic Galois group,

said to be cyclic

Corollary 22. for Galois extension, K/k, and intermediate field, F ,

- if K/k is abelian, F/k is Galois and abelian

- if K/k is cyclic, F/k is Galois and cyclic

Definition 125. [maximum abelian extension] for field, k, compositum of all abelian

Galois extensions of k in given ka, called maximum abelian extension of k, denoted by

kab
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Theorems and corollaries about Galois extensions

Theorem 54. for Galois extension, K/k, and arbitrary extension, F/k, where K and

F are subfields of common field,

- KF/F and K/(K ∩ F ) are Galois extensions

- map

σ 7→ σ|K
induces isomorphism between G(KF/F ) and G(K/(K ∩ F ))

theorem illustrated in the figure
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Corollary 23. for finite Galois extension, K/k, and arbitrary extension, F/k, where K

and F are subfields of common field,

[KF : F ] divides [F : k]

Theorem 55. for Galois extensions, K1/k and K2/k, where K1 and K2 are subfields

of common field,

- K1K2/k is Galois extension

- map

σ 7→ (σ|K1, σ|K2)

of G(K1K2/k) into G(K1/k) × G(K2/k) is injective; if K1 ∩K2 = k, map is

isomorphism

theorem illustrated in the figure
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Corollary 24. for n Galois extensions, Ki/k, where K1, . . . , Kn are subfields of

common field and Ki+1 ∩ (K1 · · ·Ki) = k for i = 1, . . . , n− 1,

- K1 · · ·Kn/k is Galois extension

- map

σ 7→ (σ|K1, . . . , σ|Kn)

induces isomorphism of G(K1 · · ·Kn/k) onto G(K1/k) × · · · ×G(Kn/k)
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Corollary 25. for Galois extension, K/k, where G(K/k) can be written as G1×· · ·×
Gn, and K1, . . . , Kn, each of which is fixed field of

G1 × · · · × {e}︸︷︷︸
ith position

× · · · ×Gn

- K1/k, . . . , Kn/k are Galois extensions

- G(Ki/k) = Gi for i = 1, . . . , n

- Ki+1 ∩ (K1 · · ·Ki) = k for i = 1, . . . , n− 1

- K = K1 · · ·Kn

Theorem 56. assume all fields are subfields of common field

- for two abelian Galois extensions, K/k and L/k, KL/k is abelian Galois extension

- for abelian Galois extension, K/k, and any extension, E/k, KE/E is abelian Galois

extension

- for abelian Galois extension, K/k, and intermediate field, E, both K/E and E/k

are abelian Galois extensions
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Solvable and radical extensions

Definition 126. [sovable extensions] finite separable extension, E/k, such that Galois

group of smallest Galois extension, K/k, containing E is solvable, said to be solvable

Theorem 57. [solvable extensions are distinguished] solvable extensions form distinguished

class of extensions

Definition 127. [solvable by radicals] finite extension, F/k, such that it is separable

and exists finite extension, E/k, containing F admitting tower decomposition

k = E0 ⊂ E1 ⊂ · · · ⊂ Em = E

with Ei+1/Ei is obtained by adjoining root of

- unity, or

- Xn = a with a ∈ Ei, and n prime to characteristic, or

- Xp −X − a with a ∈ Ei if p is positive characteristic

said to be solvable by radicals

Theorem 58. [extensions solvable by radicals] separable extension, E/k, is solvable

by radicals if and only if it is solvable
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Applications of Galois theory

Theorem 59. [insolvability of quintic polynomials] general equation of degree, n,

cannot be solved by radicals for n ≥ 5 (implied by Definition 121, Proposition 31,

Theorem 58, and Theorem 21)

Theorem 60. [fundamental theorem of algebra] f ∈ C[X] of degree, n, has

precisely n roots in C (when counted with multiplicity), hence C is algebraically closed
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Some principles

Principle 1. [principle of mathematical induction]

P (1)&[P (n ⇒ P (n+ 1)] ⇒ (∀n ∈ N)P (n)

Principle 2. [well ordering principle] each nonempty subset ofN has a smallest element

Principle 3. [principle of recursive definition] for f : X → X and a ∈ X, exists

unique infinite sequence ⟨xn⟩∞n=1 ⊂ X such that

x1 = a

and

(∀n ∈ N) (xn+1 = f(xn))

• note that Principle 1 ⇔ Principle 2 ⇒ Principle 3
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Some definitions for functions

Definition 128. [functions] for f : X → Y

• terms, map and function, exterchangeably used

• X and Y , called domain of f and codomain of f respectively

• {f(x)|x ∈ X}, called range of f

• for Z ⊂ Y , f−1(Z) = {x ∈ X|f(x) ∈ Z} ⊂ X, called preimage or inverse image

of Z under f

• for y ∈ Y , f−1({y}), called fiber of f over y

• f , called injective or injection or one-to-one if (∀x ̸= v ∈ X) (f(x) ̸= f(v))

• f , called surjective or surjection or onto if (∀x ∈ X) (∃yinY ) (y = f(x))

• f , called bijective or bijection if f is both injective and surjective, in which case, X

and Y , said to be one-to-one correspondece or bijective correspondece

• g : Y → X, called left inverse if g ◦ f is identity function

• h : Y → X, called right inverse if f ◦ h is identity function
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Some properties of functions

Lemma 18. [functions] for f : X → Y

• f is injective if and only if f has left inverse

• f is surjective if and only if f has right inverse

• hence, f is bijective if and only if f has both left and right inverse because if g and h

are left and right inverses respectively, g = g ◦ (f ◦ h) = (g ◦ f) ◦ h = h

• if |X| = |Y | < ∞, f is injective if and only if f is surjective if and only if f is

bijective
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Countability of sets

• set A is countable if range of some function whose domain is N

• N, Z, Q: countable

• R: not countable
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Limit sets

• for sequence, ⟨An⟩, of subsets of X
– limit superior or limsup of ⟨An⟩, defined by

lim sup ⟨An⟩ =

∞⋂
n=1

∞⋃
m=n

Am

– limit inferior or liminf of ⟨An⟩, defined by

lim inf ⟨An⟩ =

∞⋃
n=1

∞⋂
m=n

Am

• always

lim inf ⟨An⟩ ⊂ lim sup ⟨An⟩
• when lim inf ⟨An⟩ = lim sup ⟨An⟩, sequence, ⟨An⟩, said to converge to it, denote

lim ⟨An⟩ = lim inf ⟨An⟩ = lim sup ⟨An⟩ = A

Searching for Universal Truths - Real Analysis - Set Theory 208



Sunghee Yun August 4, 2025

Algebras of sets

• collection A of subsets of X called algebra or Boolean algebra if

(∀A,B ∈ A )(A ∪ B ∈ A ) and (∀A ∈ A )(Ã ∈ A )

– (∀A1, . . . , An ∈ A )(∪ni=1Ai ∈ A )

– (∀A1, . . . , An ∈ A )(∩ni=1Ai ∈ A )

• algebra A called σ-algebra or Borel field if

– every union of a countable collection of sets in A is in A , i.e.,

(∀⟨Ai⟩)(∪∞
i=1Ai ∈ A )

• given sequence of sets in algebra A , ⟨Ai⟩, exists disjoint sequence, ⟨Bi⟩ such that

Bi ⊂ Ai and
∞⋃
i=1

Bi =

∞⋃
i=1

Ai
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Algebras generated by subsets

• algebra generated by collection of subsets of X, C, can be found by

A =
⋂

{B|B ∈ F}

where F is family of all algebras containing C
– smallest algebra A containing C, i.e.,

(∀B ∈ F)(A ⊂ B)

• σ-algebra generated by collection of subsets of X, C, can be found by

A =
⋂

{B|B ∈ G}

where G is family of all σ-algebras containing C
– smallest σ-algebra A containing C, i.e.,

(∀B ∈ G)(A ⊂ B)
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Relation

• x said to stand in relation R to y, denoted by x R y

• R said to be relation on X if x R y ⇒ x ∈ X and y ∈ X

• R is

– transitive if x R y and y R z ⇒ x R z

– symmetric if x R y = y R x

– reflexive if x R x

– antisymmetric if x R y and y R x ⇒ x = y

• R is

– equivalence relation if transitive, symmetric, and reflexive, e.g., modulo

– partial ordering if transitive and antisymmetric, e.g., “⊂”

– linear (or simple) ordering if transitive, antisymmetric, and x R y or y R x for all

x, y ∈ X

- e.g., “≥” linearly orders R while “⊂” does not P(X)
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Ordering

• given partial order, ≺, a is

– a first/smallest/least element if x ̸= a ⇒ a ≺ x

– a last/largest/greatest element if x ̸= a ⇒ x ≺ a

– a minimal element if x ̸= a ⇒ x ̸≺ a

– a maximal element if x ̸= a ⇒ a ̸≺ x

• partial ordering ≺ is

– strict partial ordering if x ̸≺ x

– reflexive partial ordering if x ≺ x

• strict linear ordering < is

– well ordering for X if every nonempty set contains a first element
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Axiom of choice and equivalent principles

Axiom 1. [axiom of choice] given a collection of nonempty sets, C, there exists f :

C → ∪A∈CA such that

(∀A ∈ C ) (f(A) ∈ A)

- also called multiplicative axiom - preferred to be called to axiom of choice by Bertrand

Russell for reason writte on page 214

- no problem when C is finite

- need axiom of choice when C is not finite

Principle 4. [Hausdorff maximal principle] for particial ordering ≺ on X, exists a

maximal linearly ordered subset S ⊂ X, i.e., S is linearity ordered by ≺ and if

S ⊂ T ⊂ X and T is linearly ordered by ≺, S = T

Principle 5. [well-ordering principle] every set X can be well ordered, i.e., there is a

relation < that well orders X

• note that Axiom 1 ⇔ Principle 4 ⇔ Principle 5
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Infinite direct product

Definition 129. [direct product] for collection of sets, ⟨Xλ⟩, with index set, Λ,

×
λ∈Λ

Xλ

called direct product

- for z = ⟨xλ⟩ ∈×Xλ, xλ called λ-th coordinate of z

• if one of Xλ is empty,×Xλ is empty

• axiom of choice is equivalent to converse, i.e., if none of Xλ is empty,×Xλ is not

empty

if one of Xλ is empty,×Xλ is empty

• this is why Bertrand Russell prefers multiplicative axiom to axiom of choice for name of

axiom (Axiom 1)
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Field axioms

• field axioms - for every x, y, z ∈ F

– (x+ y) + z = x+ (y + z) - additive associativity

– (∃0 ∈ F)(∀x ∈ F)(x+ 0 = x) - additive identity

– (∀x ∈ F)(∃w ∈ F)(x+ w = 0) - additive inverse

– x+ y = y + x - additive commutativity

– (xy)z = x(yz) - multiplicative associativity

– (∃1 ̸= 0 ∈ F)(∀x ∈ F)(x · 1 = x) - multiplicative identity

– (∀x ̸= 0 ∈ F)(∃w ∈ F)(xw = 1) - multiplicative inverse

– x(y + z) = xy + xz - distributivity

– xy = yx - multiplicative commutativity

• system (set with + and ·) satisfying axiom of field called field

– e.g., field of module p where p is prime, Fp
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Axioms of order

• axioms of order - subset, F++ ⊂ F, of positive (real) numbers satisfies

– x, y ∈ F++ ⇒ x+ y ∈ F++

– x, y ∈ F++ ⇒ xy ∈ F++

– x ∈ F++ ⇒ −x ̸∈ F++

– x ∈ F ⇒ x = 0 ∨ x ∈ F++ ∨ −x ∈ F++

• system satisfying field axioms & axioms of order called ordered field

– e.g., set of real numbers (R), set of rational numbers (Q)
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Axiom of completeness

• completeness axiom

– every nonempty set S of real numbers which has an upper bound has a least upper

bound, i.e.,

{l|(∀x ∈ S)(l ≤ x)}
has least element.

– use inf S and supS for least and greatest element (when exist)

• ordered field that is complete is complete ordered field

– e.g., R (with + and ·)

⇒ axiom of Archimedes

– given any x ∈ R, there is an integer n such that x < n

⇒ corollary

– given any x < y ∈ R, exists r ∈ Q such tat x < r < y
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Sequences of R

• sequence of R denoted by ⟨xi⟩∞i=1 or ⟨xi⟩
– mapping from N to R

• limit of ⟨xn⟩ denoted by limn→∞ xn or lim xn - defined by a ∈ R such that

(∀ϵ > 0)(∃N ∈ N)(n ≥ N ⇒ |xn − a| < ϵ)

– lim xn unique if exists

• ⟨xn⟩ called Cauchy sequence if

(∀ϵ > 0)(∃N ∈ N)(n,m ≥ N ⇒ |xn − xm| < ϵ)

• Cauchy criterion - characterizing complete metric space (including R)

– sequence converges if and only if Cauchy sequence
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Other limits

• cluster point of ⟨xn⟩ - defined by c ∈ R

(∀ϵ > 0, N ∈ N)(∃n > N)(|xn − c| < ϵ)

• limit superior or limsup of ⟨xn⟩

lim sup xn = inf
n

sup
k>n

xk

• limit inferior or liminf of ⟨xn⟩

lim inf xn = sup
n

inf
k>n

xk

• lim inf xn ≤ lim sup xn

• ⟨xn⟩ converges if and only if lim inf xn = lim sup xn (=lim xn)
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Open and closed sets

• O called open if

(∀x ∈ O)(∃δ > 0)(y ∈ R)(|y − x| < δ ⇒ y ∈ O)

– intersection of finite collection of open sets is open

– union of any collection of open sets is open

• E called closure of E if

(∀x ∈ E & δ > 0)(∃y ∈ E)(|x− y| < δ)

• F called closed if

F = F

– union of finite collection of closed sets is closed

– intersection of any collection of closed sets is closed
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Open and closed sets - facts

• every open set is union of countable collection of disjoint open intervals

• (Lindelöf) any collection C of open sets has a countable subcollection ⟨Oi⟩ such that⋃
O∈C

O =
⋃
i

Oi

– equivalently, any collection F of closed sets has a countable subcollection ⟨Fi⟩ such

that ⋂
O∈F

F =
⋂
i

Fi
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Covering and Heine-Borel theorem

• collection C of sets called covering of A if

A ⊂
⋃
O∈C

O

– C said to cover A

– C called open covering if every O ∈ C is open

– C called finite covering if C is finite

• Heine-Borel theorem - for any closed and bounded set, every open covering has finite

subcovering

• corollary

– any collection C of closed sets including at least one bounded set every finite

subcollection of which has nonempty intersection has nonempty intersection.

Searching for Universal Truths - Real Analysis - Real Number System 223



Sunghee Yun August 4, 2025

Continuous functions

• f (with domain D) called continuous at x if

(∀ϵ > 0)(∃δ > 0)(∀y ∈ D)(|y − x| < δ ⇒ |f(y) − f(x)| < ϵ)

• f called continuous on A ⊂ D if f is continuous at every point in A

• f called uniformly continuous on A ⊂ D if

(∀ϵ > 0)(∃δ > 0)(∀x, y ∈ D)(|x− y| < δ ⇒ |f(x) − f(y)| < ϵ)
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Continuous functions - facts

• f is continuous if and only if for every open set O (in co-domain), f−1(O) is open

• f continuous on closed and bounded set is uniformly continuous

• extreme value theorem - f continuous on closed and bounded set, F , is bounded on F

and assumes its maximum and minimum on F

(∃x1, x2 ∈ F )(∀x ∈ F )(f(x1) ≤ f(x) ≤ f(x2))

• intermediate value theorem - for f continuous on [a, b] with f(a) ≤ f(b),

(∀d)(f(a) ≤ d ≤ f(b))(∃c ∈ [a, b])(f(c) = d)
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Borel sets and Borel σ-algebra

• Borel set

– any set that can be formed from open sets (or, equivalently, from closed sets) through

the operations of countable union, countable intersection, and relative complement

• Borel algebra or Borel σ-algebra

– smallest σ-algebra containing all open sets

– also

- smallest σ-algebra containing all closed sets

- smallest σ-algebra containing all open intervals (due to statement on page 222)
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Various Borel sets

• countable union of closed sets (in R), called an Fσ (F for closed & σ for sum)

– thus, every countable set, every closed set, every open interval, every open sets, is an

Fσ (note (a, b) =
⋃∞
n=1[a+ 1/n, b− 1/n])

– countable union of sets in Fσ again is an Fσ

• countable intersection of open sets called a Gδ (G for open & δ for durchschnitt -

average in German)

– complement of Fσ is a Gδ and vice versa

• Fσ and Gδ are simple types of Borel sets

• countable intersection of Fσ’s is Fσδ, countable union of Fσδ’s is Fσδσ, countable

intersection of Fσδσ’s is Fσδσδ, etc., & likewise for Gδσ...

• below are all classes of Borel sets, but not every Borel set belongs to one of these classes

Fσ, Fσδ, Fσδσ, Fσδσδ, . . . , Gδ, Gδσ, Gδσδ, Gδσδσ, . . . ,
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Riemann integral

• Riemann integral

– partition induced by sequence ⟨xi⟩ni=1 with a = x1 < · · · < xn = b

– lower and upper sums

∗ L(f, ⟨xi⟩) =
∑n−1

i=1 infx∈[xi,xi+1]
f(x)(xi+1 − xi)

∗ U(f, ⟨xi⟩) =
∑n−1

i=1 supx∈[xi,xi+1]
f(x)(xi+1 − xi)

– always holds: L(f, ⟨xi⟩) ≤ U(f, ⟨yi⟩), hence

sup
⟨xi⟩

L(f, ⟨xi⟩) ≤ inf
⟨xi⟩

U(f, ⟨xi⟩)

– Riemann integrable if

sup
⟨xi⟩

L(f, ⟨xi⟩) = inf
⟨xi⟩

U(f, ⟨xi⟩)

• every continuous function is Riemann integrable
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Motivation - want measure better than Riemann integrable

• consider indicator (or characteristic) function χQ : [0, 1] → [0, 1]

χQ(x) =

{
1 if x ∈ Q
0 if x ̸∈ Q

• not Riemann integrable: sup⟨xi⟩L(f, ⟨xi⟩) = 0 ̸= 1 = inf⟨xi⟩U(f, ⟨xi⟩)

• however, irrational numbers infinitely more than rational numbers, hence

– want to have some integral
∫

such that, e.g.,∫
[0,1]

χQ(x)dx = 0 and

∫
[0,1]

(1 − χQ(x))dx = 1
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Properties of desirable measure

• want some measure µ : M → R+ = {x ∈ R|x ≥ 0}
– defined for every subset of R, i.e., M = P(R)
– equals to length for open interval

µ[b, a] = b− a

– countable additivity: for disjoint ⟨Ei⟩∞i=1

µ(∪Ei) =
∑

µ(Ei)

– translation invariant

µ(E + x) = µ(E) for x ∈ R

• no such measure exists

• not known whether measure with first three properties exists

• want to find translation invariant countably additive measure

– hence, give up on first property
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Race won by Henri Lebesgue in 1902!

• mathematicians in 19th century struggle to solve this problem

• race won by French mathematician, Henri Léon Lebesgue in 1902!

• Lebesgue integral covers much wider range of functions

– indeed, χQ is Lebesgue integrable∫
[0,1]

χQ(x)dx = 0 and

∫
[0,1]

(1 − χQ(x))dx = 1
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Outer measure

• for E ⊂ R, define outer measure µ∗ : P(R) → R+

µ
∗
E = inf

⟨Ii⟩

{∑
l(Ii)

∣∣∣E ⊂ ∪Ii
}

where Ii = (ai, bi) and l(Ii) = bi − ai

• outer measure of open interval is length

µ
∗
(ai, bi) = bi − ai

• countable subadditivity

µ
∗
(∪Ei) ≤

∑
µ
∗
Ei

• corollaries

– µ∗E = 0 if E is countable

– [0, 1] not countable
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Measurable sets

• E ⊂ R called measurable if for every A ⊂ R

µ
∗
A = µ

∗
(E ∪ A) + µ

∗
(Ẽ ∪ A)

• µ∗E = 0, then E measurable

• every open interval (a, b) with a ≥ −∞ and b ≤ ∞ is measurable

• disjoint countable union of measurable sets is measurable, i.e., ∪Ei is measurable

• collection of measurable sets is σ-algebra
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Borel algebra is measurable

• note

– every open set is disjoint countable union of open intervals (page 222)

– disjoint countable union of measurable sets is measurable (page 234)

– open intervals are measurable (page 234)

• hence, every open set is measurable

• also

– collection of measurable sets is σ-algebra (page 234)

– every open set is Borel set and Borel sets are σ-algebra (page 226)

• hence, Borel sets are measurable

• specifically, Borel algebra (smallest σ-algebra containing all open sets) is measurable
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Lebesgue measure

• restriction of µ∗ in collection M of measurable sets called Lebesgue measure

µ : M → R+

• countable subadditivity - for ⟨En⟩

µ(∪En) ≤
∑

µEn

• countable additivity - for disjoint ⟨En⟩

µ(∪En) =
∑

µEn

• for dcreasing sequence of measurable sets, ⟨En⟩, i.e., (∀n ∈ N)(En+1 ⊂ En)

µ
(⋂

En
)

= limµEn
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(Lebesgue) measurable sets are nice ones!

• following statements are equivalent

− E is measurable

− (∀ϵ > 0)(∃ open O ⊃ E)(µ
∗
(O ∼ E) < ϵ)

− (∀ϵ > 0)(∃ closed F ⊂ E)(µ
∗
(E ∼ F ) < ϵ)

− (∃Gδ)(Gδ ⊃ E)(µ
∗
(Gδ ∼ E) < ϵ)

− (∃Fσ)(Fσ ⊂ E)(µ
∗
(E ∼ Fσ) < ϵ)

• if µ∗E is finite, above statements are equivalent to

(∀ϵ > 0)

(
∃U =

n⋃
i=1

(ai, bi)

)
(µ

∗
(U∆E) < ϵ)
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Lebesgue measure resolves problem in movitation

• let

E1 = {x ∈ [0, 1]|x ∈ Q}, E2 = {x ∈ [0, 1]|x ̸∈ Q}

• µ∗E1 = 0 because E1 is countable, hence measurable and

µE1 = µ
∗
E1 = 0

• algebra implies E2 = [0, 1] ∩ Ẽ1 is measurable

• countable additivity implies µE1 + µE2 = µ[0, 1] = 1, hence

µE1 = 1
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Lebesgue measurable functions

• for f : X → R ∪ {−∞,∞}, i.e., extended real-valued function, the followings are

equivalent

– for every a ∈ R, {x ∈ X|f(x) < a} is measurable

– for every a ∈ R, {x ∈ X|f(x) ≤ a} is measurable

– for every a ∈ R, {x ∈ X|f(x) > a} is measurable

– for every a ∈ R, {x ∈ X|f(x) ≥ a} is measurable

• if so,

– for every a ∈ R ∪ {−∞,∞}, {x ∈ X|f(x) = a} is measurable

• extended real-valued function, f , called (Lebesgue) measurable function if

– domain is measurable

– any one of above four statements holds

(refer to page 396 for abstract counterpart)
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Properties of Lebesgue measurable functions

• for real-valued measurable functions, f and g, and c ∈ R

– f + c, cf , f + g, fg are measurable

• for every extended real-valued measurable function sequence, ⟨fn⟩
– sup fn, lim sup fn are measurable

– hence, inf fn, lim inf fn are measurable

– thus, if lim fn exists, it is measurable

(refer to page 397 for abstract counterpart)
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Almost everywhere - a.e.

• statement, P (x), called almost everywhere or a.e. if

µ{x| ∼ P (x)} = 0

– e.g., f said to be equal to g a.e. if µ{x|f(x) ̸= g(x)} = 0

– e.g., ⟨fn⟩ said to converge to f a.e. if

(∃E with µE = 0)(∀x ̸∈ E)(lim fn(x) = f(x))

• facts

– if f is measurable and f = g i.e., then g is measurable

– if measurable extended real-valued f defined on [a, b] with f(x) ∈ R a.e., then for

every ϵ > 0, exist step function g and continuous function h such that

µ{x||f − g| ≥ ϵ} < ϵ, µ{x||f − h| ≥ ϵ} < ϵ
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Characteristic & simple functions

• for any A ⊂ R, χA called characteristic function if

χA(x) =

{
1 x ∈ A

0 x ̸∈ A

– χA is measurable if and only if A is measurable

• measurable φ called simple if for some distinct ⟨ai⟩ni=1

φ(x) =
n∑
i=1

aiχAi(x)

where Ai = {x|x = ai}

(refer to page 398 for abstract counterpart)
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Littlewood’s three principles

let M(E) with measurable set, E, denote set of measurable functions defined on E

• every (measurable) set is nearly finite union of intervals, e.g.,

– E is measurable if and only if

(∀ϵ > 0)(∃{Ii : open interval}ni=1)(µ
∗
(E∆(∪In)) < ϵ)

• every (measurable) function is nearly continuous, e.g.,

– (Lusin’s theorem)

(∀f ∈ M [a, b])(∀ϵ > 0)(∃g ∈ C[a, b])(µ{x|f(x) ̸= g(x)} < ϵ)

• every convergent (measurable) function sequence is nearly uniformly convergent, e.g.,

(∀ measurable ⟨fn⟩ converging to f a.e. on E with µE < ∞)

(∀ϵ > 0 and δ > 0)(∃A ⊂ E with µ(A) < δ and N ∈ N)

(∀n > N, x ∈ E ∼ A)(|fn(x) − f(x)| < ϵ)
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Egoroff’s theorem

• Egoroff theorem - provides stronger version of third statement on page 244

(∀ measurable ⟨fn⟩ converging to f a.e. on E with µE < ∞)

(∃A ⊂ E with µ(A) < ϵ)(fn uniformly converges to f on E ∼ A)
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Integral of simple functions

• canonical representation of simple function

φ(x) =

n∑
i=1

aiχAi(x)

where ai are distinct Ai = {x|φ(x) = ai} - note Ai are disjoint

• when µ{x|φ(x) ̸= 0} < ∞ and φ =
∑n

i=1 aiχAi is canonical representation, define

integral of φ by ∫
φ =

∫
φ(x)dx =

n∑
i=1

aiµAi

• when E is measurable, define ∫
E

φ =

∫
φχE

(refer to page 400 for abstract counterpart)
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Properties of integral of simple functions

• for simple functions φ and ψ that vanish out of finite measure set, i.e., µ{x|φ(x) ̸=
0} < ∞, µ{x|ψ(x) ̸= 0} < ∞, and for every a, b ∈ R∫

(aφ+ bψ) = a

∫
φ+ b

∫
ψ

(refer to page 400 for abstract counterpart)

• thus, even for simple function, φ =
∑n

i=1 aiχAi that vanishes out of finite measure

set, not necessarily in canonical representation,∫
φ =

n∑
i=1

aiµAi

• if φ ≥ ψ a.e. ∫
φ ≥

∫
ψ
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Lebesgue integral of bounded functions

• for bounded function, f , and finite measurable set, E,

sup
φ: simple, φ≤f

∫
E

φ ≤ inf
ψ: simple, f≤ψ

∫
E

ψ

– if f is defined on E, f is measurable function if and only if

sup
φ: simple, φ≤f

∫
E

φ = inf
ψ: simple, f≤ψ

∫
E

ψ

• for bounded measurable function, f , defined on measurable set, E, with µE < ∞,

define (Lebesgue) integral of f over E∫
E

f(x)dx = sup
φ: simple, φ≤f

∫
E

φ = inf
ψ: simple, f≤ψ

∫
E

ψ

(refer to page 401 for abstract counterpart)
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Properties of Lebesgue integral of bounded functions

• for bounded measurable functions, f and g, defined on E with finite measure

– for every a, b ∈ R ∫
E

(af + bg) = a

∫
E

f + b

∫
E

g

– if f ≤ g a.e. ∫
E

f ≤
∫
E

g

– for disjoint measurable sets, A,B ⊂ E,∫
A∪B

f =

∫
A

f +

∫
B

f

(refer to page 405 for abstract counterpart)

• hence, ∣∣∣∣∫
E

f

∣∣∣∣ ≤ ∫
E

|f | & f = g a.e. ⇒
∫
E

f =

∫
E

g
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Lebesgue integral of bounded functions over finite interval

• if bounded function, f , defined on [a, b] is Riemann integrable, then f is measurable

and ∫
[a,b]

f = R

∫ b

a

f(x)dx

where R
∫

denotes Riemann integral

• bounded function, f , defined on [a, b] is Riemann integrable if and only if set of points

where f is discontinuous has measure zero

• for sequence of measurable functions, ⟨fn⟩, defined on measurable E with finite

measure, and M > 0, if |fn| < M for every n and f(x) = lim fn(x) for every

x ∈ E ∫
E

f = lim

∫
E

fn
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Lebesgue integral of nonnegative functions

• for nonnegative measurable function, f , defined on measurable set, E, define∫
E

f = sup
h: bounded measurable function, µ{x|h(x) ̸=0}<∞, h≤f

∫
E

h

(refer to page 403 for abstract counterpart)

• for nonnegative measurable functions, f and g

– for every a, b ≥ 0 ∫
E

(af + bg) = a

∫
E

f + b

∫
E

g

– if f ≥ g a.e. ∫
E

f ≤
∫
E

g

• thus,

– for every c > 0 ∫
E

cf = a

∫
E

f
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Fatou’s lemma and monotone convergence theorem for Lebesgue
integral

• Fatou’s lemma - for nonnegative measurable function sequence, ⟨fn⟩, with lim fn = f

a.e. on measurable set, E ∫
E

f ≤ lim inf

∫
E

fn

– note lim fn is measurable (page 241), hence f is measurable (page 242)

• monotone convergence theorem - for nonnegative increasing measurable function

sequence, ⟨fn⟩, with lim fn = f a.e. on measurable set, E∫
E

f = lim

∫
E

fn

(refer to page 404 for abstract counterpart)

• for nonnegative measure function, f , and sequence of disjoint measurable sets, ⟨Ei⟩,∫
∪Ei

f =
∑∫

Ei

f
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Lebesgue integrability of nonnegative functions

• nonnegative measurable function, f , said to be integrable over measurable set, E, if∫
E

f < ∞

(refer to page 405 for abstract counterpart)

• for nonnegative measurable functions, f and g, if f is integrable on measurable set, E,

and g ≤ f a.e. on E, then g is integrable and∫
E

(f − g) =

∫
E

f −
∫
E

g

• for nonnegative integrable function, f , defined on measurable set, E, and every ϵ,

exists δ > 0 such that for every measurable set A ⊂ E with µA < ϵ (then f is

integrable on A, of course), ∫
A

f < ϵ
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Lebesgue integral

• for (any) function, f , define f+ and f− such that for every x

f
+
(x) = max{f(x), 0}

f
−
(x) = max{−f(x), 0}

• note f = f+ − f−, |f | = f+ + f−, f− = (−f)+

• measurable function, f , said to be (Lebesgue) integrable over measurable set, E, if

(nonnegative measurable) functions, f+ and f−, are integrable∫
E

f =

∫
E

f
+ −

∫
E

f
−

(refer to page 406 for Lebesgue counterpart)
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Properties of Lebesgue integral

• for f and g integrable on measure set, E, and a, b ∈ R

– af + bg is integral and ∫
E

(af + bg) = a

∫
E

f + b

∫
E

g

– if f ≥ g a.e. on E, ∫
E

f ≥
∫
E

g

– for disjoint measurable sets, A,B ⊂ E∫
A∪B

f =

∫
A

f +

∫
B

g

(refer to page 407 for abstract counterpart)
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Lebesgue convergence theorem (for Lebesgue integral)

• Lebesgue convergence theorem - for measurable g integrable on measurable set, E, and

measurable sequence ⟨fn⟩ converging to f with |fn| < g a.e. on E, (f is measurable

(page 241), every fn is integrable (page 254)) and∫
E

f = lim

∫
E

fn

(refer to page 408 for abstract counterpart)
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Generalization of Lebesgue convergence theorem (for Lebesgue
integral)

• generalization of Lebesgue convergence theorem - for sequence of functions, ⟨gn⟩,
integrable on measurable set, E, converging to integrable g a.e. on E, and sequence of

measurable functions, ⟨fn⟩, converging to f a.e. on E with |fn| < gn a.e. on E, if∫
E

g = lim

∫
E

gn

then (f is measurable (page 241), every fn is integrable (page 254)) and∫
E

f = lim

∫
E

fn
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Comments on convergence theorems

• Fatou’s lemma (page 253), monotone convergence theorem (page 253), Lebesgue

convergence theorem (page 257), all state that under suitable conditions, we say

something about ∫
lim fn

in terms of

lim

∫
fn

• Fatou’s lemma requires weaker condition than Lebesgue convergence theorem, i.e., only

requires “bounded below” whereas Lebesgue converges theorem also requires “bounded

above” ∫
lim fn ≤ lim inf

∫
fn

• monotone convergence theorem is somewhat between the two;

– advantage - applicable even when f not integrable

– Fatou’s lemma and monotone converges theorem very clsoe in sense that can be

derived from each other using only facts of positivity and linearity of integral
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Convergence in measure

• ⟨fn⟩ of measurable functions said to converge f in measure if

(∀ϵ > 0)(∃N ∈ N)(∀n > N)(µ{x||fn − f | > ϵ} < ϵ)

• thus, third statement on page 244 implies

(∀⟨fn⟩ converging to f a.e. on E with µE < ∞)(fn converge in measure to f)

• however, the converse is not true, i.e., exists ⟨fn⟩ converging in measure to f that

does not converge to f a.e.

– e.g., XXX

• Fatou’s lemma (page 253), monotone convergence theorem (page 253), Lebesgue

convergence theorem (page 257) remain valid! even when “convergence a.e.” replaced

by “convergence in measure”
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Conditions for convergence in measure

Proposition 32. [necessary condition for converging in measure]

(∀⟨fn⟩ converging in measure to f)
(
∃ subsequence

〈
fnk
〉
converging a.e. to f

)
Corollary 26. [necessary and sufficient condition for converging in measure] for sequence

⟨fn⟩ measurable on E with µE < ∞

⟨fn⟩ converging in measure to f

⇔
(
∀ subsequence

〈
fnk
〉) (

∃ its subsequence
〈
fnkl

〉
converging a.e. to f

)
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Diagrams for relations among various spaces

• note from the figure

– metric should be defined to utter completeness

– metric spaces can be induced from normed spaces

vector spaces

complete spaces

topological spaces

metric spaces

normed spaces
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Normed linear space

• X called linear space if

(∀x, y ∈ X, a, b ∈ R)(ax+ by ∈ X)

• linear space, X, called normed space with associated norm ∥ · ∥ : X → R+ if

–
(∀x ∈ X)(∥x∥ = 0 ⇒ x ≡ 0)

–
(∀x ∈ X, a ∈ R)(∥ax∥ = |a|∥x∥)

– subadditivity

(∀x, y ∈ X)(∥x+ y∥ ≤ ∥x∥ + ∥y∥)
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Lp spaces

• Lp = Lp[0, 1] denotes space of (Lebesgue) measurable functions such that∫
[0,1]

|f |p < ∞

• define ∥ · ∥ : Lp → R+

∥f∥ = ∥f∥p =

(∫
[0,1]

|f |p
)1/p

• Lp are linear normed spaces with norm ∥ · ∥p when p ≥ 1 because

– |f(x)|p + |g(x)|p ≤ 2p(|f(x)|p + |g(x)|p) implies (∀f, g ∈ Lp)(f + g ∈ Lp)

– |αf(x)|p = |a|p|f(x)|p implies (∀f ∈ Lp, a ∈ R)(af ∈ Lp)

– ∥f∥ = 0 ⇒ f = 0 a.e.

– ∥af∥ = |a|∥f∥
– ∥f + g∥ ≥ ∥f∥ + ∥g∥ (Minkowski inequality)
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L∞ space

• L∞ = L∞[0, 1] denotes space of measurable functions bounded a.e.

• L∞ is linear normed space with norm

∥f∥ = ∥f∥∞ = ess sup|f | = inf
g:g=f a.e

sup
x∈[0,1]

|g(x)|

– thus

∥f∥∞ = inf{M |µ{x|f(x) > M} = 0}
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Inequalities in L∞

• Minkowski inequality - for p ∈ [1,∞]

(∀f, g ∈ L
p
)(∥f + g∥p ≤ ∥f∥p + ∥g∥p)

– if p ∈ (1,∞), equality holds if and only if (∃a, b ≥ 0 with ab ̸= 0)(af = bg a.e.)

• Minkowski inequality for 0 < p < 1:

(∀f, g ∈ L
p
)(f, g ≥ 0 a.e. ⇒ ∥f + g∥p ≥ ∥f∥p + ∥g∥p)

• Hölder’s inequality - for p, q ∈ [1,∞] with 1/p+ 1/q = 1

(∀f ∈ L
p
, g ∈ L

q
)

(
fg ∈ L

1
and

∫
[0,1]

|fg| ≤
∫
[0,1]

|f |p
∫
[0,1]

|g|q
)

– equality holds if and only if (∃a, b ≥ 0 with ab ̸= 0)(a|f |p = b|g|q a.e.)
(refer to page 412 for complete measure spaces counterpart)
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Convergence and completeness in normed linear spaces

• ⟨fn⟩ in normed linear space

– said to converge to f , i.e., lim fn = f or fn → f , if

(∀ϵ > 0)(∃N ∈ N)(∀n > N)(∥fn − f∥ < ϵ)

– called Cauchy sequence if

(∀ϵ > 0)(∃N ∈ N)(∀n,m > N)(∥fn − fm∥ < ϵ)

– called summable if
∑n

i=1 fi converges

– called absolutely summable if
∑n

i=1 |fi| converges

• normed linear space called complete if every Cauchy sequence converges

• normed linear space is complete if and only if every absolutely summable series is

summable
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Banach space

• complete normed linear space called Banach space

• (Riesz-Fischer) Lp spaces are compact, hence Banach spaces

• convergence in Lp called convergence in mean of order p

• convergence in L∞ implies nearly uniformly converges
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Approximation in Lp

• ∆ = ⟨di⟩ni=0 with 0 = d1 < d2 < · · · < dn = 1 called subdivision of [0, 1] (with

∆i = [di−1, di])

• φf,∆ for f ∈ Lp called step function if

φf,∆(x) =
1

di − di+1

∫ di

di−1

f(t)dt for x ∈ [di−1, di)

• for f ∈ Lp (1 < p ≤ ∞), exist φf,∆ and continuous function, ψ such that

∥φf,∆i − f∥ < ϵ and ∥ψ − f∥ < ϵ

– Lp version of Littlewood’s second principle (page 244)

(refer to page 412 for complete measure spaces counterpart)

• for f ∈ Lp, φf,∆ → f as max∆i → 0, i.e.,

(∀ϵ > 0)(∃δ > 0)(max∆i < δ ⇒ ∥φf,∆ − f∥p < ϵ)
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Bounded linear functionals on Lp

• F : X ∈ R for normed linear space X called linear functional if

(∀f, g ∈ F, a, b ∈ R)(F (af + bg) = aF (f) + bF (g))

• linear functional, F , said to be bounded if

(∃M)(∀f ∈ X)(|F (f)| ≤ M∥f∥)

• smallest such constant called norm of F , i.e.,

∥F∥ = sup
f∈X,f ̸=0

|F (f)|/∥f∥

Searching for Universal Truths - Real Analysis - Classical Banach Spaces 272



Sunghee Yun August 4, 2025

Riesz representation theorem

• for every g ∈ Lq (1 ≤ p ≤ ∞), following defines a bounded linear functional in Lp

F (f) =

∫
fg

where ∥F∥ = ∥g∥q

• Riesz representation theorem - for every bounded linear functional in Lp, F ,

(1 ≤ p < ∞), there exists g ∈ Lq such that

F (f) =

∫
fg

where ∥F∥ = ∥g∥q

(refer to page 413 for complete measure spaces counterpart)

• for each case, Lq is dual of Lp (refer to page 358 for definition of dual)
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Metric spaces

• ⟨X, ρ⟩ with nonempty set, X, and metric ρ : X ×X → R+ called metric space if

for every x, y, z ∈ X

– ρ(x, y) = 0 ⇔ x = y

– ρ(x, y) = ρ(y, x)

– ρ(x, y) ≤ ρ(x, z) + ρ(z, y) (triangle inequality)

• examples of metric spaces

– ⟨R, | · |⟩, ⟨Rn, ∥ · ∥p⟩ with 1 ≤ p ≤ ∞

• for f ⊂ X, Sx,r = {y|ρ(y, x) < r} called ball

• for E ⊂ X, sup{ρ(x, y)|x, y ∈ E} called diameter of E defined by

• ρ called pseudometric if 1st requirement removed

• ρ called extended metric if ρ : X ×X → R+ ∪ {∞}
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Cartesian product

• for two metric spaces ⟨X, ρ⟩ and ⟨Y, σ⟩, metric space ⟨X × Y , τ⟩ with τ :

X × Y → R+ such that

τ((x1, y1), (x2, y2)) = (ρ(x1, x2)
2
+ σ(y1, y2)

2
)
1/2

called Cartesian product metric space

• τ satisfies all properties required by metric

– e.g., Rn × Rm = Rn+m
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Open sets - metric spaces

• O ⊂ X said to be open open if

(∀x ∈ O)(∃δ > 0)(∀y ∈ X)(ρ(y, x) < δ ⇒ y ∈ O)

– X and ∅ are open

– intersection of finite collection of open sets is open

– union of any collection of open sets is open
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Closed sets - metric spaces

• x ∈ X called point of closure of E ⊂ X if

(∀ϵ > 0)(∃y ∈ E)(ρ(y, x) < ϵ)

– E denotes set of points of closure of E; called closure of E

– E ⊂ E

• F ⊂ X said to be closed if

F = F

– X and ∅ are closed

– union of finite collection of closed sets is closed

– intersection of any collection of closed sets is closed

• complement of closed set is open

• complement of open set is closed
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Dense sets and separability - metric spaces

• D ⊂ X said to be dense if

D = X

• X is said to be separable if exists finite dense subset, i.e.,

(∃D ⊂ X)(|D| < ∞ & D = X)

• X is separable if and only if exists countable collection of open sets ⟨Oi⟩ such that for

all open O ⊂ X

O =
⋃
Oi⊂O

Oi
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Continuous functions - metric spaces

• f : X → Y for metric spaces ⟨X, ρ⟩ and ⟨Y, σ⟩ called mapping or function from X

into Y

• f said to be onto if

f(X) = Y

• f said to be continuous at x ∈ X if

(∀ϵ > 0)(∃δ > 0)(∀y ∈ X)(ρ(y, x) < δ ⇒ σ(f(y), f(x)) < ϵ)

• f said to be continuous if f is continuous at every x ∈ X

• f is continuous if and only if for every open O ⊂ Y , f−1(O) is open

• if f : X → Y and g : Y → Z are continuous, g ◦ f : X → Z is continuous
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Homeomorphism

• one-to-one mapping of X onto Y (or equivalently, one-to-one correspondece between

X and Y ), f , said to be homeomorphism if

– both f and f−1 are continuous

• X and Y said to be homeomorphic if exists homeomorphism

• topology is study of properties unaltered by homeomorphisms and such properties called

topological

• one-to-one correspondece X and Y is homeomorphism if and only if it maps open sets

in X to open sets in Y and vice versa

• every property defined by means of open sets (or equivalently, closed sets) or/and being

continuous functions is topological one

– e.g., f is continuous on X is homeomorphism, then f ◦ h−1 is continuous function

on Y
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Isometry

• homeomorphism preserving distance called isometry, i.e.,

(∀x, y ∈ X)(σ(h(x), h(y)) = ρ(x, y))

• X and Y said to be isometric if exists isometry

• (from abstract point of view) two isometric spaces are exactly same; it’s nothing but

relabeling of points

• two metrics, ρ and σ on X, said to be equivalent if identity mapping of ⟨X, ρ⟩ onto

⟨X,σ⟩ is homeomorphism

– hence, two metrics are equivalent if and only if set in one metric is open whenever

open in the other metric
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Convergence - metric spaces

• ⟨xn⟩ defined for metric space, X

– said to converge to x, i.e., lim xn = x or xn → x, if

(∀ϵ > 0)(∃N ∈ N)(∀n > N)(ρ(xn, x) < ϵ)

– equivalently, every ball about x contains all but finitely many points of ⟨xn⟩

– said to have cluster point, x, if

(∀ϵ > 0, N ∈ N)(∃n > N)(ρ(xn, x) < ϵ)

– equivalently, every ball about x contains infinitely many points of ⟨xn⟩
– equivalently, every ball about x contains at least one point of ⟨xn⟩

• every convergent point is cluster point

– converse not true
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Completeness - metric spaces

• ⟨xn⟩ of metric space, X, called Cauchy sequence if

(∀ϵ > 0)(∃N ∈ N)(∀n,m > N)(ρ(xn, xm) < ϵ)

• convergence sequence is Cauchy sequence

• X said to be complete if every Cauchy sequence converges

– e.g., ⟨R, ρ⟩ with ρ(x, y) = |x− y|

• for incomplete ⟨X, ρ⟩, exists complete X∗ where X is isometrically embedded in X∗

as dense set

• if X contained in complete Y , X∗ is isometric with X in Y
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Uniform continuity - metric spaces

• f : X → Y for metric spaces ⟨X, ρ⟩ and ⟨Y, σ⟩ said to be uniformly continuous if

(∀ϵ > 0)(∃δ)(∀x, y ∈ X)(ρ(x, y) < δ ⇒ σ(f(x), f(y)) < ϵ)

– example of continuous, but not uniformly continuous function

– h : [0, 1) → R+ with h(x) = x/(1 − x)

– h maps Cauchy sequence ⟨1 − 1/n⟩∞n=1 in [0, 1) to ⟨n− 1⟩∞n=1 in R+, which

is not Cauchy sequence

• homeomorphism f between ⟨X, ρ⟩ and ⟨Y, σ⟩ with both f and f−1 uniformly

continuous called uniform homeomorphism
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Uniform homeomorphism

• uniform homeomorphism f between ⟨X, ρ⟩ and ⟨Y, σ⟩ maps every Cauchy sequence

⟨xn⟩ in X mapped to ⟨f(xn)⟩ in Y which is Cauchy

– being Cauchy sequence, hence, being complete preserved by uniform homeomorphism

– being uniformly continuous also preserved by uniform homeomorphism

• each of three properties (being Cauchy sequence, being complete, being uniformly

continuous) called uniform property

• uniform properties are not topological properties, e.g., h on page 285

– is homeomorphism between incomplete space [0, 1) and complete space R+

– maps Cauchy sequence ⟨1 − 1/n⟩∞n=1 in [0, 1) to ⟨n− 1⟩∞n=1 in R+, which is not

Cauchy sequence

– its inverse maps uniformly continuous function sin back to non-uniformly continuity

function on [0, 1)

Searching for Universal Truths - Real Analysis - Metric Spaces 286



Sunghee Yun August 4, 2025

Uniform equivalence

• two metrics, ρ and σ on X, said to be uniformly equivalent if identity mapping of

⟨X, ρ⟩ onto ⟨X,σ⟩ is uniform homeomorphism, i.e.,

(∀ϵ, δ > 0, x, y ∈ X)(ρ(x, y) < δ ⇒ σ(x, y) < ϵ& σ(x, y) < δ ⇒ ρ(x, y) < ϵ)

• example of uniform equivalence on X × Y

– any two of below metrics are uniformly equivalent on X × Y

τ((x1, y1), (x2, y2)) = (ρ(x1, x2)
2
+ σ(y1, y2)

2
)
1/2

ρ1((x1, y1), (x2, y2)) = ρ(x1, x2) + σ(y1, y2)

ρ∞((x1, y1), (x2, y2)) = max{ρ(x1, x2), σ(y1, y2)}

• for ⟨X, ρ⟩ and complete ⟨Y, σ⟩ and f : X → Y uniformly continuous on E ⊂ X

into Y , exists unique continuous extension g of f on E, which is uniformly continuous
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Subspaces

• for metric space, ⟨X, ρ⟩, metric space ⟨S, ρS⟩ with S ⊂ X and ρS being restriction

of ρ to S, called subspace of ⟨X, ρ⟩
– e.g. (with standard Euclidean distance)

- Q is subspace of R
-
{
(x, y) ∈ R2

∣∣ y = 0
}

is subspace of R2, which is isometric to R

• for metric space, X, and its subspace, S,

– E ⊂ S is closure of E relative to S.

– A ⊂ S is closure relative to S if and only if (∃F ⊂ A)(A = F ∩ S)
– A ⊂ O is open relative to S if and only if (∃ open O ⊂ A)(A = O ∩ S)

• also

– every subspace of separable metric space is separable

– every complete subset of metric space is closed

– every closed subset of complete metric space is complete
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Compact metric spaces

• motivation - want metric spaces where

– conclusion of Heine-Borel theorem (page 223) are valid

– many properties of [0, 1] are true, e.g., Bolzano-Weierstrass property (page 291)

• e.g.,

– bounded closed set in R has finite open covering property

• metric space X called compact metric space if every open covering of X, U , contains

finite open covering of X, e.g.,

(∀ open covering of X,U)(∃{O1, . . . , On} ⊂ U)(X ∈ ∪Oi)

• A ⊂ X called compact if compact as subspace of X

– i.e., every open covering of A contains finite open covering of A
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Compact metric spaces - alternative definition

• collection, F , of sets in X said to have finite intersection property if every finite

subcollection of F has nonempty intersection

• if rephrase definition of compact metric spaces in terms of closed instead of open

– X is called compact metric space if every collection of closed sets with empty

intersection contains finite subcollection with empty intersection

• thus, X is compact if and only if every collection of closed sets with finite intersection

property has nonempty intersection
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Bolzano-Weierstrass property and sequential compactness

• metric space said to

– have Bolzano-Weierstrass property if every sequence has cluster point

– X said to be sequentially compact if every sequence has convergent subsequence

• X has Bolzano-Weierstrass property if and only if sequentially compact (proof can be

found in Proof 15)
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Compact metric spaces - properties

• following three statements about metric space are equivalent (not true for general

topological sets)

– being compact

– having Bolzano-Weierstrass property

– being sequentially compact

• compact metric spaces have corresponding to some of those of complete metric spaces

(compare with statements on page 288)

– every compact subset of metric space is closed and bounded

– every closed subset of compact metric space is compact

• (will show above in following slides)
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Necessary condition for compactness

• compact metric space is sequentially compact (proof can be found in Proof 16)

• equivalently, compact metric space has Bolzano-Weierstrass property (page 291)
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Necessary conditions for sequentially compactness

• every continuity real-valued function on sequentially compact space is bounded and

assumes its maximum and minimum

• sequentially compact space is totally bounded

• every open covering of sequentially compact space has Lebesgue number
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Sufficient conditions for compactness

• metric space that is totally bounded and has Lebesgue number for every covering is

compact
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Borel-Lebesgue theorem

• conditions on pages 293, 294, and 295 imply the following equivalent statements

– X is compact

– X has Bolzano-Weierstrass property

– X is sequentially compact

• above called Borel-Lebesgue theorem

• hence, can drop sequentially in every statement on page 294, i.e.,

– every continuity real-valued function on sequentially compact space is bounded and

assumes its maximum and minimum

– sequentially compact space is totally bounded

– every open covering of sequentially compact space has Lebesgue number

Searching for Universal Truths - Real Analysis - Metric Spaces 296



Sunghee Yun August 4, 2025

Compact metric spaces - other facts

• closed subset of compact space is compact

• compact subset of metric space is closed and bounded

– hence, Heine-Borel theorem (page 223) implies

set of R is compact if and only if closed and bounded

• metric space is compact if and only if it is complete and totally bounded

• thus, compactness can be viewed as absolute type of closedness

- refer to page 332 for exactly same comments for general topological spaces

• continuous image of compact set is compact

• continuous mapping of compact metric space into metric space is uniformly continuous
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Diagrams for relations among metric spaces

• the figure shows relations among metric spaces stated on pages 294, 295, 296, and 297

totally bounded

compact

Lebesgue numbercomplete
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Baire category

• do (more) deeply into certain aspects of complete metric spaces, namely, Baire theory

of category

• subset E in metric space where ∼ (E) is dense, said to be nowhere dense

– equivalently, E contains no nonempty open set

• union of countable collection of nowhere open sets, said to be of first category or

meager

• set not of first category, said to be of second category or nonmeager

• complement of set of first category, called residual or co-meager
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Baire category theorem

• Baire theorem - for complete metric space, X, and countable collection of dense open

subsets, ⟨Ok⟩ ⊂ X, the intersection of the collection⋂
Ok

is dense

- refer to page 343 for locally compact space version of Baire theorem

• Baire category theorem - no nonempty open subset of complete metric space is of first

category, i.e., union of countable collection of nowhere dense subsets

• Baire category theorem is unusual in that uniform property, i.e., completeness of metric

spaces, implies purely topological nature2

2“no nonempty open subset of complete metric space is of first category” is purely topological nature because if two spaces
are (topologically) homeomorphic, and no nonempty open subsets of one space is of first category, then neither is any nonempty
open subset of the other space
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Second category everywhere

• metric or topological spaces with property that “no nonempty open subset of complete

metric space is of first category”, said to be of second category everywhere (with respect

to themselves)

• Baire category theorem says complete metric space is of second category everywhere

• locally compact Hausdorff spaces are of second category everywhere, too (refer to

page 340 for definition of locally compact Hausdorff spaces)

– for these spaces, though, many of results of category theory follow directly from local

compactness
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Sets of first category

• collection of sets with following properties, called a σ-ideal of sets

– countable union of sets in the collection is, again, in the collection

– subset of any in the collection is, again, in the collection

• both of below collections are σ-ideal of sets

– sets of first category in topological space

– measure zero sets in complete measure space

• sets of first category regards as “small” sets

– such sets in complete metric spaces no interior points

• interestingly! set of first category in [0, 1] can have Lebesgue measure 1, hence

complement of which is residual set of measure zero
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Some facts of category theory

• for open set, O, and closed set, F , O ∼ O and F ∼ F ◦ are nowhere dense

• closed set of first category in complete metric space is nowhere dense

• subset of complete metric space is residual if and only if contains dense Gδ, hence

subset of complete metric space is of first category if and only if contained in Fσ whose

complement is dense

• for countable collection of closed sets, ⟨Fn⟩,
⋃
Fn

◦ is residual open set; if
⋃
Fn is

complete metric space, O is dense

• some applications of category theory to analysis seem almost too good to be belived;

here’s one:

• uniform boundedness principle - for family, F , of real-valued continuous functions

on complete metric space, X, with property that (∀x ∈ X)(∃Mx ∈ R)(∀f ∈
F)(|f(x)| ≤ Mx)

(∃ open O,M ∈ R)(∀x ∈ O, f ∈ F)(|f(x)| ≤ M)
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Motivation for topological spaces

• want to have something like

– notion of open set is fundamental

– other notions defined in terms of open sets

– more general than metric spaces

• why not stick to metric spaces?

– certain notions have natural meaning not consistent with topological concepts derived

from metric spaces

– e.g.. weak topologies in Banach spaces
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Topological spaces

• ⟨X, J⟩ with nonempty set X of points and family J of subsets, which we call open,

having the following properties called topological spaces

– ∅, X ∈ J

– O1, O2 ∈ J ⇒ O1 ∩O2 ∈ J

– Oα ⇒ ∪αOα ∈ J

• family, J, is called topology

• for X, always exist two topologies defined on X

– trivial topology having only ∅ and X

– discrete topology for which every subset of X is an open set
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Topological spaces associated with metric spaces

• can associate topological space, ⟨X, J⟩, to any metric space ⟨X, ρ⟩ where J is family

of open sets in ⟨X, ρ⟩
∵ because properties in definition of topological space satisfied by open sets in metric

space

• ⟨X, J⟩ assiaciated with metric space, ⟨X, ρ⟩ said to be metrizable

– ρ called metric for ⟨X, J⟩

• distinction between metric space and associated topological space is essential

∵ because different metric spaces associate same topological space

– in this case, these metric spaces are equivalent

• metric and topological spaces are couples
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Some definitions for topological spaces

• subset F ⊂ X with F̃ is open called closed

• intersection of all closed sets containing E ⊂ X called closure of E denoted by E

– E is smallest closed set containing E

• x ∈ X called point of closure of E ⊂ X if every open set containing x meets E, i.e.,

has nonempty intersection with E

• union of all open sets contained in E ⊂ X is called interior of E denoted by E◦

• x ∈ X called interior point of E if exists open set, E, with x ∈ O ⊂ E
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Some properties of topological spaces

• ∅, X are closed

• union of closed sets is closed

• intersection of any collection of closed sets is closed

• E ⊂ E, E = E, A ∪ B = A ∪ B

• F closed if and only if F = F

• E is set of points of closure of E

• E◦ ⊂ E, (E◦)
◦
= E◦, (A ∪ B)

◦
= A◦ ∪ B◦

• E◦ is set of interior points of E

• (Ẽ)
◦
=∼ E
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Subspace and convergence of topological spaces

• for subset of ⟨X, J⟩, A, define topology S for A with S = {A ∩O|O ∈ J}
– S called topology inherited from J

– ⟨A,S⟩ called subspace of ⟨X, J⟩

• ⟨xn⟩ said to converge to x ∈ X if

(∀O ∈ J containing x)(∃N ∈ N)(∀n > N)(xn ∈ O)

– denoted by
lim xn = x

• ⟨xn⟩ said to have x ∈ X as cluster point if

(∀O ∈ J containing x,N ∈ N)(∃n > N)(xn ∈ O)

• ⟨xn⟩ has converging subsequence to x ∈ X, then x is cluster point of ⟨xn⟩
– converse is not true for arbitrary topological space
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Continuity in topological spaces

• mapping f : X → Y with ⟨X, J⟩, ⟨Y,S⟩ said to be continuous if

(∀O ∈ S)(f
−1

(O) ∈ J)

• f : X → Y said to be continuous at x ∈ X if

(∀O ∈ S containing f(x))(∃U ∈ J containing x)(f(U) ⊂ O)

• f is continuous if and only if f is continuous at every x ∈ X

• for continuous f on ⟨X, J⟩, restriction g on A ⊂ X is continuous (proof can be found

in Proof 17)

• for A with A = A1∪A2 where both A1 and A2 are either open or closed, f : A → Y

with each of both restrictions, f |A1 and f |A2, continuous, is continuous
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Homeomorphism for topological spaces

• one-to-one continuous function of X onto Y , f , with continuous inverse function,

f−1, called homeomorphism between ⟨X, J⟩ and ⟨Y,S⟩

• ⟨X, J⟩ and ⟨Y,S⟩ said to be homeomorphic if exists homeomorphism between them

• homeomorphic spaces are indistinguishable where homeomorphism amounting to

relabeling of points (from abstract pointp of view)

• thus, below roles are same

– role that homeomorphism plays for topological spaces

– role that isometry plays for metric spaces

– role that isomorphism plays for algebraic systems
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Stronger and weaker topologies

• for two topologies, J and S for same X with S ⊃ J

– S said to be stronger or finer than J

– J said to be weaker or coarser than S

• S is stronger than J if and only if identity mapping of ⟨X,S⟩ to ⟨Y, J⟩ is continuous

• for two topologies, J and S for same X, J ∩ S also topology

• for any collection of topologies, {Jα} for same X, ∩αJα is topology

• for nonempty set, X, and any collection of subsets of X, C
– exists weakest topology containing C, i.e., weakest topology where all subsets in C

are open

– it is intersection of all topologies containing C
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Bases for topological spaces

• collection B of open sets of ⟨X, J⟩ called a base for topology, J, of X if

(∀O ∈ J, x ∈ O)(∃B ∈ B)(x ∈ B ⊂ O)

• collection Bx of open sets of ⟨X, J⟩ containing x called a base at x if

(∀O ∈ J containing x)(∃B ∈ Bx)(x ∈ B ⊂ O)

– elements of Bx often called neighborhoods of x

– when no base given, neighborhood of x is an open set containing x

• thus, B of open sets is a base if and only if contains a base for every x ∈ X

• for topological space that is also metric space

– all balls from a base

– balls centered at x form a base at x
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Characterization of topological spaces in terms of bases

• definition of open sets in terms of base - when B is base of ⟨X, J⟩

(O ∈ J) ⇔ (∀x ∈ O)(∃B ∈ B)(x ∈ B ⊂ O)

• often, convenient to specify topology for X by

– specifying a base of open sets, B, and

– using above criterion to define open sets

• collection of subsets of X, B, is base for some topology if and only if

(∀x ∈ X)(∃B ∈ B)(x ∈ B)

and

(∀x ∈ X,B1, B2 ∈ B with x ∈ B1 ∩ B2)(∃B3 ∈ B)(x ∈ B3 ⊂ B1 ∩ B2)

– condition of collection to be basis for some topology
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Subbases for topological spaces

• for ⟨X, J⟩, collection of open sets, C called a subbase for topology J if

(∀O ∈ J, x ∈ O)(∃⟨Ci⟩ni=1 ⊂ C)(x ∈ ∩Ci ⊂ O)

– sometimes convenient to define topology in terms of subbase

• for subbase for J, C, collection of finite intersections of sets from C forms base for J

• any collection of subsets of X is subbase for weakest topology where sets of the

collection are open
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Axioms of countability

• topological space said to satisfy first axiom of countability if exists countable base at

every point

– every metric space satisfies first axiom of countability because for every x ∈ X, set

of balls centered at x with rational radii forms base for x

• topological space said to satisfy second axiom of countability if exists countable base

for the space

– every metric space satisfies second axiom of countability if and only if separable

(refer to page 279 for definition of separability)
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Topological spaces - facts

• given base, B, for ⟨X, J⟩

– x ∈ E if and only if (∃B ∈ B)(x ∈ B & B ∩ E ̸= ∅)

• given base at x for ⟨X, J⟩, Bx, and base at y for ⟨Y,S⟩, Cy

– f : X → Y continuous at x if and only if (∀C ∈ Cy)(∃B ∈ Bx)(B ⊂ f−1(C))

• if ⟨X, J⟩ satisfies first axiom of countability

– x ∈ E if and only if (∃⟨xn⟩ from E)(lim xn = x)

– x cluster point of ⟨xn⟩ if and only if exists its subsequence converging to x

• ⟨X, J⟩ said to be Lindelöf space or have Lindelöf property if every open covering of X

has countable subcover

• second axiom of countability implies Lindelöf property
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Separation axioms

• why separation axioms

– properties of topological spaces are (in general) quite different from those of metric

spaces

– often convenient assume additional conditions true in metric spaces

• separation axioms

– T1 - Tychonoff spaces

- (∀x ̸= y ∈ X)(∃ open O ⊂ X)(y ∈ O, x ̸∈ O)

– T2 - Hausdorff spaces

- (∀x ̸= y ∈ X)(∃ open O1, O2 ⊂ X with O1 ∩O2 = ∅)(x ∈ O1, y ∈ O2)

– T3 - regular spaces

- T1 & (∀ closed F ⊂ X, x ̸∈ F )(∃ open O1, O2 ⊂ X with O1∩O2 = ∅)(x ∈
O1, F ⊂ O2)

– T4 - normal spaces

- T1 & (∀ closed F1, F2 ⊂ X)(∃ open O1, O2 ⊂ X with O1 ∩ O2 = ∅)(F1 ⊂
O1, F2 ⊂ O2)
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Separation axioms - facts

• necessary and sufficient condition for T1

– topological space satisfies T1 if and only if every singletone, {x}, is closed

• important consequences of normality, T4

– Urysohn’s lemma - for normal topological space, X

(∀ disjoint closed A,B ⊂ X)(∃f ∈ C(X, [0, 1]))(f(A) = {0}, f(B) = {1})

– Tietze’s extension theorem - for normal topological space, X

(∀ closed A ⊂ X, f ∈ C(A,R))(∃g ∈ C(X,R))(∀x ∈ A)(g(x) = f(x))

– Urysohn metrization theorem - normal topological space satisfying second axiom of

countability is metrizable
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Weak topology generated by functions

• given any set of points, X & any collection of functions of X into R, F , exists weakest

totally on X such that all functions in F is continuous

– it is weakest topology containing - refer to page 313

C =
⋃
f∈F

⋃
O⊂R

f
−1

(O)

– called weak topology generated by F
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Complete regularity

• for ⟨X, J⟩ and continuous function collection F , weak topology generated by F is

weaker than J

– however, if

(∀ closed F ⊂ X, x ̸∈ F )(∃f ∈ F)(f(A) = {0}, f(x) = 1)

then, weak topology generated by F coincides with J

– if condition satisfied by F = C(X,R), X said to be completely regular provided X

satisfied T1 (Tychonoff space)

• every normal topological (T4) space is completely regular (Urysohn’s lemma)

• every completely regular space is regular space (T3)

• complete regularity sometimes called T
312

Searching for Universal Truths - Real Analysis - Topological Spaces 322



Sunghee Yun August 4, 2025

Diagrams for separation axioms for topological spaces

• the figure shows T4 ⇒ T
312

⇒ T3 ⇒ T2 ⇒ T1

• every metric spaces is normal space

T1

T4

T3.5

T3

T2

M
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Topological spaces of interest

• very general topological spaces quite bizarre

– do not seem to be much needed in analysis

• only topological spaces (Royden) found useful for analysis are

– metrizable topological spaces

– locally compact Hausdorff spaces

– topological vector spaces

• all above are completely regular

• algebraic geometry, however, uses Zariski topology on affine or projective space,

topology giving us compact T1 space which is not Hausdorff
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Connectedness

• topological space, X,said to be connected if not exist two nonempty disjoint open sets,

O1 and O2, such that O1 ∪O2 = X

– such pair, (O1, O2), if exist, called separation of X

– pair of disjoint nonempty closed sets, (F1, F2), with F1∪F2 = X is also separation

of X - because they are also open

• X is connected if and only if only subsets that are both closed and open are ∅ and X

• subset E ⊂ X said to be connected if connected in topology inherited from ⟨X, J⟩

– thus, E is connected if not exist two nonempty open sets, O1 and O2, such that

E ⊂ O1 ∪O2 and E ∩O1 ∩O2 = ∅
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Properties of connected space, component, and local connectedness

• if exists continuous mapping of connected space to topological space, Y , Y is connected

• (generalized version of) intermediate value theorem - for f : X → R where X is

connected

(∀x, y ∈ X, c ∈ R with f(x) < c < f(y))(∃z ∈ X)(z = f(z))

• subset of R is connected if and only if is either interval or singletone

• for x ∈ X, union of all connected sets containing x is called component

– component is connected and closed

– two components containing same point coincide

– thus, X is disjoint union of components

• X said to be locally connected if exists base for X consisting of connected sets

– components of locally connected space are open

– space can be connected, but not locally connected
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Product topological spaces

• for ⟨X, J⟩ and ⟨Y,S⟩, topology on X × Y taking as a base the following

{O1 ×O2|O1 ∈ J, O2 ∈ S}

called product topology for X × Y

– for metric spaces, X and Y , product topology is product metric

• for indexed family with index set, A, ⟨Xα, Jα⟩, product topology on×α∈AXα defined

as taking as a base the following{×Xα

∣∣∣Oα ∈ Jα, Oα = Xα except finite number of α
}

• πα :×Xα → Xα with πα(y) = xα, i.e., α-th coordinate, called projection

– every πα continuous

– ×Xα weakest topology with continuous πα’s

• if (∀α ∈ A)(Xα = X),×Xα denoted by XA
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Product topology with countable index set

• for countable A
– ×Xα denoted by Xω or XN ∵ only # elements of A important

– e.g., 2ω is Cantor set if denoting discrete topology with two elements by 2

• if X is metrizable, Xω is metrizable

• Nω = NN is topology space homeomorphic to R ∼ Q when denoting discrete topology

with countable set also by N
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Product topologies induced by set and continuous functions

• for I = [0, 1], IA called cube

• Iω is metrizable, and called Hilbert cube

• for any set X and any collection of f : X → [0, 1], F with (∀x ̸= y ∈ X)(∃f ∈
F)(f(x) ̸= f(y))

– can define one-to-one mapping of F into IX with f(x) as x-th coordinate of f

– πx : F → I (mapping of F into I) with πx(f) = f(x)

– topology that F inherits as subspace of IX called topology of pointwise

convergence (because πx is project, hence continuous)

– can define one-to-one mapping of X into IF with f(x) as f -th coordinate of x

– topology of X as subspace of IF is weak topology generated by F
– if every f ∈ F is continuous,

– topology of X into IF is continuous

– if for every closed F ⊂ X and for each x ̸∈ F , exists f ∈ F such that

f(x) = 1 and f(F ) = {0}, then X is homeomorphic to image of IF
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Compact spaces

• compactness for metric spaces (page 289) can be generalized to topological spaces

– things are very much similar to those of metrics spaces

• for subset K ⊂ X, collection of open sets, U , the union of which K is contained in

called open covering of K

• topological space, X, said to be compact if every open convering of contains finite

subcovering

• K ⊂ X said to be compact if compact as subspace of X

– or equivalently, K is compact if every covering of K by open sets of X has finite

subcovering

– thus, Heine-Borel (page 223) says every closed and bounded subset of R is compact

• for F ⊂ P(X) any finite subcollection of which has nonempty intersection called finite

intersection property

• thus, topological space compact if and only if every collection with finite intersection

property has nonempty intersection
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Compact spaces - facts

• compactness can be viewed as absolute type of closedness because

– closed subset of compact space is compact

– compact subset of Hausdorff space is closed

- refer to page 297 for exactly the same comments for metric spaces

• thus, every compact set of R is closed and bounded

• continuous image of compact set is compact

• one-to-one continuous mapping of compact space into Hausdorff space is

homeomorphism
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Refinement of open covering

• for open covering of X, U , open covering of X every element of which is subset of

element of U , called refinement of U or said to refine U

• X is cmopact if and only if every open covering has finite refinement

• any two open covers, U and V , have common refinement, i.e.,

{U ∩ V |U ∈ U, V ∈ V}
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Countable compactness and Lindelöf

• topological space for which every open covering has countable subcovering said to be

Lindelöf

• topological space for which every countable open covering has finite subcovering said to

be countably compact space

• thus, topological space is compact if and only if both Lindelöf and countably compact

• every second countable space is Lindelöf

• thus, countable compactness coincides with compactness if second countable (i.e.,

satisfying second axiom of countability)

• continuous image of compact countably compact space is countably compact
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Bolzano-Weierstrass property and sequential compactness

• topological space, X, said to have Bolzano-Weierstrass property if every sequence,

⟨xn⟩, in X has at least one cluster point, i.e.,

(∀⟨xn⟩)(∃x ∈ X)(∀ϵ > 0, N ∈ N)(∃n > N,O ⊂ X)(x ∈ O,O is open, xn ∈ O)

• topological space has Bolzano-Weierstrass properties if and only if countably compact

• topological space said to be sequentially compact if every sequence has converging

subsequence

• sequentially compact space is countably compact

• thus, Lindelöf coincides with compactness if sequentially compact

• countably compact and first countable (i.e., satisfying first axiom of countability) space

is sequentially compact
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Diagrams for relations among topological spaces

• the figure shows relations among topological spaces stated on pages 334 and 335

Lindelof

compact

2nd countable

BW == CC

sequentially compact
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Real-valued functions on topological spaces

• continuous real-valued function on countably compact space is bounded and assumes

maximum and minimum

• f : X → R with topological space, X, called upper semicontinuous if {x ∈
X|f(x) < α} is open for every α ∈ R

• stronger statement - upper semicontinuous real-valued function on countably compact

space is bounded (from above) and assumes maximum

• Dini - for sequence of upper semicontinuous real-valued functions on countably compact

space, ⟨fn⟩, with property that ⟨fn(x)⟩ decreases monotonically to zero for every

x ∈ X, ⟨fn⟩ converges to zero uniformly
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Products of compact spaces

• Tychonoff theorem - (probably) most important theorem in general topology

• most applications in analysis need only special case of product of (closed) intervals, but

this special case does not seem to be easire to prove than general case, i.e., Tychonoff

theorem

• lemmas needed to prove Tychonoff theorem

– for collection of subsets of X with finite intersection property, A, exists collection

B ⊃ A with finite intersection property that is maximal with respect to this property,

i.e., no collection with finite intersection property properly contains B
– for collection, B, of subsets of X that is maximal with respect to finite intersection

property, each intersection of finite number of sets in B is again in B and each set

that meets each set in B is itself in B

• Tychonoff theorem - product space×Xα is compact for indexed family of compact

topological spaces, ⟨Xα⟩
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Locally compact spaces

• topological space, X, with

(∀x ∈ X)(∃ open O ⊂ X)(x ∈ O,O is compact)

called locally compact

• topological space is locally compact if and only if set of all open sets with compact

closures forms base for the topological space

• every compact space is locally compact

– but converse it not true

- e.g., Euclidean spaces Rn are locally compact, but not compact
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Locally compact Hausdorff spaces

• locally compact Hausdorff spaces constitute one of most important classes of topological

spaces

• so useful is combination of Hausdorff separation axioms in connection with compactness

that French usage (following Bourbaki) reserves term ‘compact space’ for those compact

and Hausdorff, using term ‘pseudocompact’ for those not Hausdorff!

• following slides devote to establishing some of their basic properties
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Support and subordinateness

• for function, f , on topological spaces, closure of {x|f(x) ̸= 0}, called support of f ,

i.e.,

support f = {x|f(x) ̸= 0}

• given covering {Oλ} of X, collection {φα} with φα : X → R satisfying

(∀φα)(∃Oλ)(supportφα ⊂ Oλ)

said to be subordinate to {Oλ}
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Some properties of locally compact Hausdorff spaces

• for compact subset, K, of locally compact Hausdorff space, X

– exists open subset with compact closure, O ⊂ X, containing K

– exists continuous nonnegative function, f , on X, with

(∀x ∈ K)(f(x) = 1) and (∀x ̸∈ O)(f(x) = 0)

if K is Gδ, may take f < 1 in K̃

• for open covering, {Oλ}, for compact subset, K, of locally compact Hausdorff space,

exists ⟨φi⟩ni=1 ⊂ C(X,R+) subordinate to {Oλ} such that

(∀x ∈ K)(φ1(x) + · · · + φn(x) = 1)
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Local compactness and second Baire category

• for locally compact space, X, and countable collection of dense open subsets,

⟨Ok⟩ ⊂ X, the intersection of the collection⋂
Ok

is dense

– analogue of Baire theorem for complete metric spaces (refer to page 300 for Baire

theorem)

• thus, every locally compact space is locally of second Baire category with respect to

itself
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Local compactness, Hausdorffness, and denseness

• for countable union,
⋃
Fn, of closed sets containing open subset, O, in locally compact

space, union of interiors,
⋃
Fn

◦, is open set dense in O

• dense subset of Hausdorff space, X, which is locally compact in its subspace topology,

is open subset of X

• subset, Y , of locally compact Hausdorff space is locally compact in its subspace

topology if and only if Y is relatively open subset of Y
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Alexandroff one-point compactification

• for locally compact Hausdorff space, X, can form X∗ by adding single point ω ̸∈ X to

X and take set in X∗ to be open if it is either open in X or complement of compact

subset in X, then

– X∗ is compact Hausdorff spaces

– identity mapping of X into X∗ is homeomorphism of X and X∗ ∼ {ω}
– X∗ called Alexandroff one-point compactification of X

– ω often referred to as infinity in X∗

• continuous mapping, f , from topological space to topological space inversely mapping

compact set to compact set, said to be proper

• proper maps from locally compact Hausdorff space into locally compact Hausdorff space

are precisely those continuous maps of X into Y tha can be extended to continuous

maps f∗ of X∗ into Y ∗ by taking point at infinity in X∗ to point at infinity in Y ∗
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Manifolds

• connected Hausdorff space with each point having neighborhood homeomorphic to ball

in Rn called n-dimensional manifold

• sometimes say manifold is connected Hausdorff space that is locally Euclidean

• thus, manifold has all local properties of Euclidean space; particularly locally compact

and locally connected

• neighborhood homeomorphic to ball called coordinate neighborhood or coordinate ball

• pair ⟨U,φ⟩ with coordinate ball, U , with homeomorphism from U onto ball in Rn, φ,
called coodinate chart; φ called coordinate map

• coordinate (in Rn) of point, x ∈ U , under φ said to be coordinate of x in the chart
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Equivalent properties for manifolds

• for manifold, M , the following are equivalent

– M is paracompact

– M is σ-compact

– M is Lindelöf

– every open cover of M has star-finite open refinement

– exist sequence of open subsets of M , ⟨On⟩, with On compact, On ⊂ On+1, and

M =
⋃
On

– exists proper continuous map, φ : M → [0,∞)

– M is second countable
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Vector spaces

• set X with + : X × X → X, · : R × X → X satisfying the following properties

called vector space or linear space or linear vector space over R

- for all x, y, z ∈ X and λ, µ ∈ R

x+ y = y + x - additive commutativity

(x+ y) + z = x+ (y + z) - additive associativity

(∃0 ∈ X) x+ 0 = x - additive identity

λ(x+ y) = λx+ λy - distributivity of multiplication over addition

(λ+ µ)x = λx+ µx - distributivity of multiplication over addition

λ(µx) = (λµ)x - multiplicative associativity

0 · x = 0 ∈ X

1 · x = x
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Norm and Banach spaces

• ∥ · ∥ : X → R+ with vector space, X, called norm if

for all x, y ∈ X and α ∈ R

∥x∥ = 0 ⇔ x = 0 - positive definiteness / positiveness /point-separating

∥x+ y∥ ≥ ∥x∥ + ∥y∥ - triangle inequality / subadditivity

∥αx∥ = |α|∥x∥ - Absolute homogeneity

• normed vector space that is complete metric space with metric induced by norm, i.e.,

ρ : X ×X → R+ with ρ(x, y) = ∥x− y∥, called Banach space

– can be said to be class of spaces endowed with both topological and algebraic

structure

• examples include

– Lp with 1 ≤ p ≤ ∞ (page 270),

– C(X) = C(X,R), i.e., space of all continuous real-valued functions on compact

space, X
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Properties of vector spaces

• normed vector space is complete if and only if every absolutely summable sequence is

summable
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Subspaces of vector spaces

• nonempty subset, S, of vector space, X, with x, y ∈ S ⇒ λx + µy ∈ S, called

subspace or linear manifold

• intersection of any family of linear manifolds is linear manifold

• hence, for A ⊂ X, exists smallest linear manifold containing A, often denoted by {A}

• if S is closed as subset of X, called closed linear manifold

• some definitions

– A+ x defined by {y + x|y ∈ A}, called translate of A by x

– λA defined by {λx|x ∈ A}
– A+ B defined by {x+ y|x ∈ A, y ∈ B}
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Linear operators on vector spaces

• mapping of vector space, X, to another (possibly same) vector space called linear

mapping, or linear operator, or linear transformation if

(∀x, y ∈ X,α, β ∈ R)(A(αx+ βyy) = α(Ax) + β(Ay))

• linear operator called bounded if

(∃M)(∀x ∈ X)(∥Ax∥ ≤ M∥x∥)

• least such bound called norm of linear operator, i.e.,

M = sup
x∈X,x ̸=0

∥Ax∥/∥x∥

– linearity implies

M = sup
x∈X,∥x∥=1

∥Ax∥ = sup
x∈X,∥x∥≤1

∥Ax∥
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Isomorphism and isometrical isomorphism

• bounded linear operator from X to Y called isomorphism if exists bounded inverse

linear operator, i.e.,

(∃A : X → Y,B : Y → X)(AB and BA are identity)

• isomorphism between two normed vector spaces that preserve norms called isometrical

isomorphism

• from abstract point of view, isometrically isomorphic spaces are identical, i.e., isometrical

isomorphism merely amounts to element renaming
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Properties of linear operators on vector spaces

• for linear operators, point continuity ⇒ boundedness ⇒ uniform continuity, i.e.,

– bounded linear operator is uniformly continuous

– linear operator continuous at one point is bounded

• space of all bounded linear operators from normed vector space to Banach space is

Banach space
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Linear functionals on vector spaces

• linear operator from vector space, X, to R called linear functional, i.e., f : X → R
such that for all x, y ∈ X and α, β ∈ R

f(αx+ βy) = αf(x) + βf(y)

• want to extend linear functional from subspace to whole vector space while preserving

properties of functional
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Hahn-Banach theorem

• Hahn-Banach theorem - for vector space, X, and linear functional, p : X → R with

(∀x, y ∈ X,α ≥ 0)(p(x+ y) ≤ p(x) + p(y) and p(αx) = αp(x))

and for subspace of X, S, and linear functional, f : S → R, with

(∀s ∈ S)(f(s) ≤ p(s))

exists linear functional, F : X → R, such that

(∀s ∈ S)(F (s) = f(s)) and (∀x ∈ X)(F (x) ≤ p(x))

• corollary - for normed vector space, X, exists bounded linear functional, f : X → R

f(x) = ∥f∥∥x∥
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Dual spaces of normed spaces

• space of bounded linear functionals on normed space, X, called dual or conjugate of

X, denoted by X∗

• every dual is Banach space (refer to page 355)

• dual of Lp is (isometrically isomorphic to) Lq for 1 ≤ p < ∞
– exists natural representation of bounded linear functional on Lp by Lq (by Riesz

representation theorem on page 273)

• not every bounded linear functionals on L∞ has natural representation (proof can be

found in Proof 18)
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Natural isomorphism

• define linear mapping of normed space, X, to X∗∗ (i.e., dual of dual of X),

φ : X → X∗∗ such that for x ∈ X, (∀f ∈ X∗)((φ(x))(f) = f(x))

– then, ∥φ(x)∥ = sup∥g∥=1,g∈X∗ g(x) ≤ sup∥g∥=1,g∈X∗ ∥g∥∥x∥ = ∥x∥

– by corollary on page 357, there exists f ∈ X∗ such that f(x) = ∥x∥, then

∥f∥ = 1, and f(x) = ∥x∥, thus ∥φ(x)∥ = sup∥g∥=1,g∈X∗ g(x) ≥ f(x) = ∥x∥

– thus, ∥φ(x)∥ = ∥x∥, hence φ is isometrically isomorphic linear mapping of X onto

φ(X) ⊂ X∗∗, which is subspace of X∗∗

– φ called natural isomorphism of X into X∗∗

– X said to be reflexive if φ(X) = X∗∗

• thus, Lp with 1 < p < ∞ is reflexive, but L1 and L∞ are not

• note X may be isometric with X∗∗ without reflexive
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Completeness of natural isomorphism

• for natural isomorphism, φ

• X∗∗ is complete, hence Banach space

– because bounded linear functional to R (refer to page 355)

• thus, closure of φ(X) in X∗∗, φ(X), complete (refer to page 288)

• therefore, every normed vector space (X) is isometrically isomorphic to dense subset of

Banach spaces (X∗∗)
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Hahn-Banach theorem - complex version

• Bohnenblust and Sobczyk - for complex vector space, X, and linear functional,

p : X → R with

(∀x, y ∈ X,α ∈ C)(p(x+ y) ≤ p(x) + p(y) and p(αx) = |α|p(x))

and for subspace of X, S, and (complex) linear functional, f : S → C, with

(∀s ∈ S)(|f(s)| ≤ p(s))

exists linear functional, F : X → R, such that

(∀s ∈ S)(F (s) = f(s))

and

(∀x ∈ X)(|F (x)| ≤ p(x))
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Open mapping on topological spaces

• mapping from topological space to another topological space the image of each open

set by which is open called open mapping

• hence, one-to-one continuous open mapping is homeomorphism

• (will show) continuous linear transformation of Banach space onto another Banach

space is always open mapping

• (will) use above to provide criteria for continuity of linear transformation
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Closed graph theorem (on Banach spaces)

• every continuous linear transformation of Banach space onto Banach space is open

mapping

– in particular, if the mapping is one-to-one, it is isomorphism

• for linear vector space, X, complete in two norms, ∥ · ∥A and ∥ · ∥B, with

C ∈ R such that (∀x ∈ X)(∥x∥A ≤ C∥x∥B), two norms are equivalent, i.e.,

(∃C ′ ∈ R)(∀x ∈ X)(∥x∥B ≤ C ′∥x∥A)

• closed graph theorem - linear transformation, A, from Banach space, A, to Banach

space, B, with property that “if ⟨xn⟩ converges in X to x ∈ X and ⟨Axn⟩ converges

in Y to y ∈ Y , then y = Ax” is continuous

– equivalent to say, if graph {(x,Ax)|x ∈ X} ⊂ X × Y is closed, A is continuous
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Principle of uniform boundedness (on Banach spaces)

• principle of uniform boundedness - for family of bounded linear operators, F from

Banach space, X, to normed space, Y , with

(∀x ∈ X)(∃Mx)(∀T ∈ F)(∥Tx∥ ≤ Mx)

then operators in F is uniformly bounded, i.e.,

(∃M)(∀T ∈ F)(∥T∥ ≤ M)
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Topological vector spaces

• just as notion of metric spaces generalized to notion of topological spaces

• notion of normed linear space generalized to notion of topological vector spaces

• linear vector space, X, with topology, J, equipped with continuous addition,

+ : X ×X → X and continuous multiplication by scalars, + : R ×X → X, called

topological vector space
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Translation invariance of topological vector spaces

• for topological vector space, translation by x ∈ X is homeomorphism (due to continuity

of addition)

– hence, x+O of open set O is open

– every topology with this property said to be translation invariant

• for translation invariant topology, J, on X, and base, B, for J at 0, set

{x+ U |U ∈ B}

forms a base for J at x

• hence, sufficient to give a base at 0 to determine translation invariance of topology

• base at 0 often called local base
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Sufficient and necessarily condition for topological vector spaces

• for topological vector space, X, can find base, B, satisfying following properties

(∀U, V ∈ B)(∃W ∈ B)(W ⊂ U ∩ V )

(∀U ∈ B, x ∈ U)(∃V ∈ B)(x+ V ⊂ U)

(∀U ∈ B)(∃V ∈ B)(V + V ⊂ U)

(∀U ∈ B, x ∈ X)(∃α ∈ R)(x ∈ αU)

(∀U ∈ B, 0 < |α| ≤ 1 ∈ R)(αU ⊂ U,αU ⊂ B)

• conversely, for collection, B, of subsets containing 0 satisfying above properties, exists

topology for X making X topological vector space with B as base at 0

– this topology is Hausdorff if and only if⋂
{U ∈ B} = {0}

• for normed linear space, can take B to be set of spheres centered at 0, then B satisfies

above properties, hence can form topological vector space

Searching for Universal Truths - Real Analysis - Banach Spaces 367



Sunghee Yun August 4, 2025

Topological isomorphism

• in topological vector space, can compare neighborhoods at one point with neighborhoods

of another point by translation

• for mapping, f , from topological vector space, X, to topological vector space, Y , such

that

(∀ open O ⊂ Y with 0 ∈ O)(∃ open U ⊂ X with 0 ∈ U)

(∀x ∈ X)(f(x+ U) ⊂ f(x) +O)

said to be uniformly continuous

• linear transformation, f , is uniformly continuous if continuous at one point

• continuous one-to-one mapping, φ, from X onto Y with continuous φ−1 called

(topological) isomorphism

– in abstract point of view, isomorphic spaces are same

• Tychonoff - finite-dimensional Hausdorff topological vector space is topologically

isomorphic to Rn for some n
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Weak topologies

• for vector space, X, and collection of linear functionals, F , weakest topology generated

by F , i.e., in way that each functional in F is continuous in that topology, called weak

topology generated by F
– translation invariant

– base at 0 given by sets

{x ∈ X|∀f ∈ G, |f(x)| < ϵ}

for all finite G ⊂ F and ϵ > 0

– basis satisfies properties on page 367, hence, (above) weak topology makes topological

vector space

• for normed vector space,X, and collection of continuous functionals, F , i.e., F ⊂ X∗,

weak topology generated by F weaker than (fewer open sets) norm topology of X

• metric topology generated by norm called strong topology of X

• weak topology generated by X∗ called weak topology of X
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Strongly and weakly open and closed sets

• open and closed sets of strong topology called strongly open and strongly closed

• open and closed sets of weak topology called weakly open and weakly closed

• wealy closed set is strongly closed, but converse not true

• however, these coincides for linear manifold, i.e., linear manifold is weakly closed if and

only if strongly closed

• every strongly converent sequence (or net) is weakly convergent
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Weak∗ topologies

• for normed space, weak topology of X∗ is weakest topology for which all functionals in

X∗∗ are continuous

• turns out that weak topology of X∗ is less useful than weak topology generated by X,

i.e., that generated by φ(X) where φ is the natural embedding of X into X∗∗ (refer

to page 359)

• (above) weak topology generated by φ(X) called weak∗ topology for X∗

– even weaker than weak topology of X∗

– thus, weak∗ closed subset of is weakly closed, and weak convergence implies weak∗

convergence

• base at 0 for weak∗ topology given by sets

{f |∀x ∈ A, |f(x)| < ϵ}

for all finite A ⊂ X and ϵ > 0

• when X is reflexive, weak and weak∗ topologies coincide

• Alaoglu - unit ball S∗ = {f ∈ X∗|∥f∥ ≥ 1} is compact in weak∗ topology
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Convex sets

• for vector space, X and x, y ∈ X

{λx+ (1 − λ)y|λ ∈ [0, 1]} ⊂ X

called segmenet joining x and y

• set K ⊂ X said to be convex or convex set if every segment joining any two points in

K is in K, i.e., (∀x, y ∈ K)(segment joining x, y ⊂ X)

• every λx+ (1 − λ)y for 0 < λ < 1 called interior point of segment

• point in K ⊂ X where intersection with K of every line going through x contains

open interval about x, said to be internal point, i.e.,

(∃ϵ > 0)(∀y ∈ K, |λ| < ϵ)(x+ yx ∈ K)

• convex set examples - linear manifold & ball, ellipsoid in normed space
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Properties of convex sets

• for convex sets, K1 and K2, following are also convex sets

K1 ∩K2, λK1, K1 +K2

• for linear operators from vector space, X, and vector space, Y ,

– image of convex set (or linear manifold) in X is convex set (or linear manifold) in Y ,

– inverse image of convex set (or linear manifold) in Y is convex set (or linear manifold)

in X

• closure of convex set in topological vector space is convex set
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Support functions of and separated convex sets

• for subset K of vector space X, p : K → R+ with p(x) = inf λ|λ−1x ∈ K,λ > 0

called support functions

• for convex set K ⊂ X containing 0 as internal point

– (∀x ∈ X,λ ≥ 0)(p(λx) = λp(x))

– (∀x, y ∈ X)(p(x+ y) ≤ p(x) + p(y))

– {x ∈ X|p(x) < 1} ⊂ K ⊂ {x ∈ X|p(x) ≤ 1}

• two convex sets, K1 and K2 such that exists linear functional, f , and α ∈ R with

(∀x ∈ K1)(f(x) ≤ α) and (∀x ∈ K2)(f(x) ≥ α), said to be separated

• for two disjoint convex sets in vector space with at least one of them having internal

point, exists nonzero linear functional that separates two sets

Searching for Universal Truths - Real Analysis - Banach Spaces 374



Sunghee Yun August 4, 2025

Local convexity

• topological vector space with base for topology consisting of convest sets, said to be

locally convex

• for family of convex sets, N , in vector space, following conditions are sufficient for

being able to translate sets in N to form base for topology to make topological space

into locally convex topological vector space

(∀N ∈ N )(x ∈ N ⇒ x is internal)

(∀N1, N2 ∈ N )(∃N3 ∈ N )(N3 ⊂ N1 ∩N2)

(∀N ∈ N , α ∈ R with 0 < |α| < 1)(αN ∈ N )

• conversely, for every locally convex topological vector space, exists base at 0 satisfying

above conditions

• follows that

– weak topology on vector space generated by linear functionals is locally convex

– normed vector space is locally convex topological vector space
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Facts regarding local convexity

• for locally convex topological vector space closed convex subset, F , with point, x, not

in F , exists continuous linear functional, f , such that

f(x) < inf
y∈F

f(y)

• corollaries

– convex set in locally convex topological vector space is strongly closed if and only if

weakly closed

– for distinct points, x and y, in locally convex Hausdorff vector space, exists

continuous linear functional, f , such that f(x) ̸= f(y)
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Extreme points and supporting sets of convex sets

• point in convex set in vector space that is not interior point of any line segment lying in

the set, called extreme point

• thus, x is extreme point of convex set, K, if and only if x = λy + (1 − λ)z with

0 < λ < 1 implies y ̸∈ K or z ̸∈ K

• closed and convex subset, S, of convex set, K, with property that for every interior

point of line segment in K belonging to S, entire line segment belongs to S, called

supporting set of K

• for closed and convex set, K, set of points a continuous linear functional assumes

maximum on K, is supporting set of K
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Convex hull and convex convex hull

• for set E in vector space, intersection of all convex sets containing set, E, called convex

hull of E, which is convex set

• for set E in vector space, intersection of all closed convex sets containing set, E, called

closed convex hull of E, which is closed convex set

• Krein-Milman theorem - compact convex set in locally convex topologically vector space

is closed convex hull of its extreme points
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Hilbert spaces

• Banach space, H, with function ⟨·, ·⟩ : H ×H → R satisfying following properties,

called Hilbert space

(∀x, y, z ∈ H,α, β ∈ R)(⟨αx+ βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩)

(∀x, y ∈ H)(⟨x, y⟩ = ⟨y, z⟩)

(∀x ∈ H)(⟨x, x⟩ = ∥x∥2
)

• ⟨x, y⟩ called inner product for x, y ∈ H

– examples - ⟨x, y⟩ = xTy =
∑
xiyi for R

n, ⟨x, y⟩ =
∫
x(t)y(t)dt for L2

• Schwarz or Cauchy-Schwarz or Cauchy-Buniakowsky-Schwarz inequality -

∥x∥∥y∥ ≥ ⟨x, y⟩

– hence,

- linear functional defined by f(x) = ⟨x, y⟩ bounded by ∥y∥
- ⟨x, y⟩ is continuous function from H ×H to R
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Inner product in Hilbert spaces

• x and y in H with ⟨x, y⟩ = 0 said to be orthogonal denoted by x ⊥ y

• set S of which any two elements orthogonal called orthogonal system

• orthogonal system called orthonormal if every element has unit norm

• any two elements are
√
2 apart, hence if H separable, every orthonormal system in H

must be countable

• shall deal only with separable Hilbert spaces
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Fourier coefficients

• assume orthonormal system expressed as sequence, ⟨φn⟩ - may be finite or infinite

• for x ∈ H

an = ⟨x, φn⟩
called Fourier coefficients

• for n ∈ N, we have

∥x∥2 ≥
n∑
i=1

a
2
i

Proof :∥∥∥∥∥x−
n∑
i=1

aiφi

∥∥∥∥∥
2

=
〈
x−

∑
aiφi, x−

∑
aiφi

〉
= ⟨x, x⟩ − 2

〈
x,
∑

aiφi
〉

+
〈∑

aiφi,
∑

aiφi
〉

= ∥x∥2 − 2
∑

ai ⟨x, φi⟩ +
∑

a
2
i∥φi∥

2
= ∥x∥2 −

∑
a
2
i ≥ 0

Searching for Universal Truths - Real Analysis - Banach Spaces 381



Sunghee Yun August 4, 2025

Fourier coefficients of limit of x

• Bessel’s inequality - for x ∈ H, its Fourier coefficients, ⟨an⟩
∞∑
n=1

a
2
n ≤ ∥x∥2

• then, ⟨zn⟩ defined by following is Cauchy sequence zn =
∑n

i=1 aiφi

• completeness (of Hilbert space) implies ⟨zn⟩ converges - let y = lim zn

y = lim zn =

∞∑
i=1

aiφi

• continuity of inner product implies ⟨y, φn⟩ = lim(zn, φn) = an, i.e., Fourier

coefficients of y ∈ H are an, i.e.,

• y has same Fourier coefficients as x
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Complete orthonormal system

• orthonormal system, ⟨φn⟩∞n=1, of Hilbert spaces, H, is said to be complete if

(∀x ∈ H,n ∈ N)(⟨x, φn⟩ = 0) ⇒ x = 0

• orthonormal system is complete if and only if maximal, i.e.,

⟨φn⟩ is complete ⇔ ((∃ orthonormal R ⊂ H)(∀n ∈ N)(φn ∈ R) ⇒ R = ⟨φn⟩)

(proof can be found in Proof 19)

• Hausdorff maximal principle (Principle 4) implies existence of maximal orthonormal

system, hence following statement

• for separable Hilbert space, H, every orthonormal system is separable and exists a

complete orthonormal system. any such system, ⟨φn⟩, and x ∈ H

x =
∑

anφn

with an = ⟨x, φn⟩, and ∥x∥ =
∑
a2n
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Dimensions of Hilbert spaces

• every complete orthonormal system of separable Hilbert space has same number of

elements, i.e., has same cardinality

• hence, every complete orthonormal system has either finite or countably infinite

complete orthonormal system

• this number called dimension of separable Hilbert space

– for Hilbert space with countably infinite complete orthonormal system, we say,

dimH = ℵ0
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Isomorphism and isometry between Hilbert spaces

• isomorphism, Φ, of Hilbert space onto another Hilbert space is linear mapping with

property, ⟨Φx,Φy⟩ = ⟨x, y⟩

• hence, every isomorphism between Hilbert spaces is isometry

• every n-dimensional Hilbert space is isomorphic to Rn

• every ℵ0-dimensional Hilbert space is isomorphic to l2, which again is isomorphic to L2

• L2[0, 1] is separable and ⟨cos(nπt)⟩ is infinite orthogonal system

• every bounded linear functional, f , on Hilbert space, H, has unique y such that

(∀x ∈ H)(f(x) = ⟨x, y⟩)

and ∥f∥ = ∥y∥
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Purpose of integration theory

• purpose of “measure and integration” slides

– abstract (out) most important properties of Lebesgue measure and Lebesgue

integration

• provide certain axioms that Lebesgue measure satisfies

• base our integration theory on these axioms

• hence, our theory valid for every system satisfying the axioms
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Measurable space, measure, and measure space

• family of subsets containing ∅ closed under countable union and completement, called

σ-algebra

• mapping of sets to extended real numbers, called set function

• (X,B) with set, X, and σ-algebra of X, B, called measurable space

– A ∈ B, said to be measurable (with respect to B)

• nonnegative set function, µ, defined on B satisfying µ(∅) = 0 and for every disjoint,

⟨En⟩∞n=1 ⊂ B,

µ
(⋃

En
)

=
∑

µEn

called measure on measurable space, (X,B)

• measurable space, (X,B), equipped with measure, µ, called measure space and

denoted by (X,B, µ)
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Measure space examples

• (R,M, µ) with Lebesgue measurable sets, M, and Lebesgue measure, µ

• ([0, 1], {A ∈ M|A ⊂ [0, 1]}, µ) with Lebesgue measurable sets, M, and Lebesgue

measure, µ

• (R,B, µ) with class of Borel sets, B, and Lebesgue measure, µ

• (R,P(R), µC) with set of all subsets of R, P(R), and counting measure, µC

• interesting (and bizarre) example

– (X,A, µB) with any uncountable set, X, family of either countable or complement

of countable set, A, and measure, µB, such that µBA = 0 for countable A ⊂ X

and µBB = 1 for uncountable B ⊂ X
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More properties of measures

• for A,B ∈ B with A ⊂ B

µA ≤ µB

• for ⟨En⟩ ⊂ B with µE1 < ∞ and En+1 ⊂ En

µ
(⋂

En
)

= limµEn

• for ⟨En⟩ ⊂ B

µ
(⋃

En
)

≤
∑

µEn
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Finite and σ-finite measures

• measure, µ, with µ(X) < ∞, called finite

• measure, µ, with X =
⋃
Xn for some ⟨Xn⟩ and µ(Xn) < ∞, called σ-finite

– always can take ⟨Xn⟩ with disjoint Xn

• Lebesgue measure on [0, 1] is finite

• Lebesgue measure on R is σ-finite

• countering measure on uncountable set is not σ-measure
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Sets of finite and σ-finite measure

• set, E ∈ B, with µE < ∞, said to be of finite measure

• set that is countable union of measurable sets of finite measure, said to be of σ-finite

measure

• measurable set contained in set of σ-finite measure, is of σ-finite measure

• countable union of sets of σ-finite measure, is of σ-finite measure

• when µ is σ-finite, every measurable set is of σ-finite
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Semifinite measures

• roughly speacking, nearly all familiar properties of Lebesgue measure and Lebesgue

integration hold for arbitrary σ-finite measure

• many treatment of abstract measure theory limit themselves to σ-finite measures

• many parts of general theory, however, do not required assumption of σ-finiteness

• undesirable to have development unnecessarily restrictive

• measure, µ, for which every measurable set of infinite measure contains measurable sets

of arbitrarily large finite measure, said to be semifinite

• every σ-finite measure is semifinite measure while measure, µB, on page 389 is not
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Complete measure spaces

• measure space, (X,B, µ), for which B contains all subsets of sets of measure zero,

said to be complete, i.e.,

(∀B ∈ B with µB = 0)(A ⊂ B ⇒ A ∈ B)

– e.g., Lebesgue measure is complete, but Lebesgue measure restricted to σ-algebra of

Borel sets is not

• every measure space can be completed by addition of subsets of sets of measure zero

• for (X,B, µ), can find complete measure space (X,B0, µ0) such that

− B ⊂ B0

− E ∈ B ⇒ µE = µ0E

− E ∈ B0 ⇔ E = A ∪ B where B,C ∈ B, µC = 0, A ⊂ C

– (X,B0, µ0) called completion of (X,B, µ)
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Local measurability and saturatedness

• for (X,B, µ), E ⊂ X for which (∀B ∈ B with µB < ∞)(E ∩ B ∈ B), said to

be locally measurable

• collection, C , of all locally measurable sets is σ-algebra containing B

• measure for which every locally measurable set is measurable, said to be saturated

• every σ-finite measure is saturated

• measure can be extended to saturated measure, but (unlike completion) extension is

not unique

– can take C as extension for locally measurable sets, but measure can be extended on

C in more than one ways
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Measurable functions

• concept and properties of measurable functions in abstract measurable space almost

identical with those of Lebesgue measurable functions (page 239)

• theorems and facts are essentially same as those of Lebesgue measurable functions

• assume measurable space, (X,B)

• for f : X → R ∪ {−∞,∞}, following are equivalent

– (∀a ∈ R)({x ∈ X|f(x) < a} ∈ B)

– (∀a ∈ R)({x ∈ X|f(x) ≤ a} ∈ B)

– (∀a ∈ R)({x ∈ X|f(x) > a} ∈ B)

– (∀a ∈ R)({x ∈ X|f(x) ≥ a} ∈ B)

• f : X → R ∪ {−∞,∞} for which any one of above four statements holds, called

measurable or measurable with respect to B

(refer to page 240 for Lebesgue counterpart)
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Properties of measurable functions

• Theorem 61. [measurability preserving function operations] for measurable functions,

f and g, and c ∈ R

– f + c, cf , f + g, fg, f ∨ g are measurable

• Theorem 62. [limits of measurable functions] for every measurable function

sequence, ⟨fn⟩
– sup fn, lim sup fn, inf fn, lim inf fn are measurable

– thus, lim fn is measurable if exists

(refer to page 241 for Lebesgue counterpart)
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Simple functions and other properties

• φ called simple function if for distinct ⟨ci⟩ni=1 and measurable sets, ⟨Ei⟩ni=1

φ(x) =

n∑
i=1

ciχEi(x)

(refer to page 243 for Lebesgue counterpart)

• for nonnegative measurable function, f , exists nondecreasing sequence of simple

functions, ⟨φn⟩, i.e., φn+1 ≥ φn such that for every point in X

f = limφn

– for f defined on σ-finite measure space, we may choose ⟨φn⟩ so that every φn
vanishes outside set of finite measure

• for complete measure, µ, f measurable and f = g a.e. imply measurability of g
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Define measurable function by ordinate sets

• {x|f(x) < α} sometimes called ordinate sets, which is nondecreasing in α

• below says when given nondecreasing ordinate sets, we can find f satisfying

{x|f(x) < α} ⊂ Bα ⊂ {x|f(x) ≤ α}

• for nondecreasing function, h : D → B, for dense set of real numbers, D, i.e.,

Bα ⊂ Bβ for all α < β where Bα = h(α), exists unique measurable function,

f : X → R ∪ {−∞,∞} such that f ≤ α on Bα and f ≥ α on X ∼ Bα

• can relax some conditions and make it a.e. version as below

• for function, h : D → B, for dense set of real numbers, D, such that

µ(Bα ∼ Bβ) = 0 for all α < β where Bα = h(α), exists measurable function,

f : X → R ∪ {−∞,∞} such that f ≤ α a.e. on Bα and f ≥ α a.e. on X ∼ Bα

– if g has the same property, f = g a.e.
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Integration

• many definitions and proofs of Lebesgue integral depend only on properties of Lebesgue

measure which are also true for arbitrary measure in abstract measure space (page 246)

• integral of nonnegative simple function, φ(x) =
∑n

i=1 ciχEi(x), on measurable set,

E, defined by ∫
E

φdµ =

n∑
i=1

ciµ(Ei ∩ E)

– independent of representation of φ

(refer to page 247 for Lebesgue counterpart)

• for a, b ∈ R++ and nonnegative simple functions, φ and ψ∫
(aφ+ bψ) = a

∫
φ+ b

∫
ψ

(refer to page 248 for Lebesgue counterpart)
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Integral of bounded functions

• for bounded function, f , identically zero outside measurable set of finite measure

sup
φ: simple, φ≤f

∫
φ = inf

ψ: simple, f≤ψ

∫
ψ

if and only if f = g a.e. for measurable function, g

(refer to page 249 for Lebesgue counterpart)

• but, f = g a.e. for measurable function, g, if and only if f is measurable with respect

to completion of µ, µ̄

• natural class of functions to consider for integration theory are those measurable with

respect to completion of µ

• thus, shall either assume µ is complete measure or define integral with respect to µ

to be integral with respect to completion of µ depending on context unless otherwise

specified

Searching for Universal Truths - Real Analysis - Measure and Integration 401



Sunghee Yun August 4, 2025

Difficulty of general integral of nonnegative functions

• for Lebesgue integral of nonnegative functions (page 252)

– first define integral for bounded measurable functions

– define integral of nonnegative function, f as supremum of integrals of all bounded

measurable functions, h ≤ f , vanishing outside measurable set of finite measure

• unfortunately, not work in case that measure is not semifinite

– e.g., if B = {∅, X} with µ∅ = 0 and µX = ∞, we want
∫
1dµ = ∞, but only

bounded measurable function vanishing outside measurable set of finite measure is

h ≡ 0, hence,
∫
gdµ = 0

• to avoid this difficulty, we define integral of nonnegative measurable function directly in

terms of integrals of nonnegative simple functions
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Integral of nonnegative functions

• for measurable function, f : X → R ∪ {∞}, on measure space, (X,B, µ), define
integral of nonnegative extended real-valued measurable function∫

fdµ = sup
φ: simple function, 0≤φ≤f

∫
φdµ

(refer to page 252 for Lebesgue counterpart)

• however, definition of integral of nonnegative extended real-valued measurable function

can be awkward to apply because

– taking supremum over large collection of simple functions

– not clear from definition that
∫
(f + g) =

∫
f +

∫
g

• thus, first establish some convergence theorems, and determine value of
∫
f as limit of∫

φn for increasing sequence, ⟨φn⟩, of simple functions converging to f
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Fatou’s lemma and monotone convergence theorem

• Fatou’s lemma - for nonnegative measurable function sequence, ⟨fn⟩, with lim fn = f

a.e. on measurable set, E ∫
E

f ≤ lim inf

∫
E

fn

• monotone convergence theorem - for nonnegative measurable function sequence, ⟨fn⟩,
with fn ≤ f for all n and with lim fn = f a.e.∫

E

f = lim

∫
E

fn

(refer to page 253 for Lebesgue counterpart)
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Integrability of nonnegative functions

• for nonnegative measurable functions, f and g, and a, b ∈ R+∫
(af + bg) = a

∫
f + b

∫
g &

∫
f ≥ 0

– equality holds if and only if f = 0 a.e.

(refer to page 250 for Lebesgue counterpart)

• monotone convergence theorem together with above yields, for nonnegative measurable

function sequence, ⟨fn⟩ ∫ ∑
fn =

∑∫
fn

• measurable nonnegative function, f , with∫
E

fdµ < ∞

said to be integral (over measurable set, E, with respect to µ)

(refer to page 254 for Lebesgue counterpart)
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Integral

• arbitrary function, f , for which both f+ and f− are integrable, said to be integrable

• in this case, define integral ∫
E

f =

∫
E

f
+ −

∫
E

f
−

(refer to page 255 for Lebesgue counterpart)
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Properties of integral

• for f and g integrable on measure set, E, and a, b ∈ R

– af + bg is integral and ∫
E

(af + bg) = a

∫
E

f + b

∫
E

g

– if |h| ≤ |f | and h is measurable, then h is integrable

– if f ≥ g a.e. ∫
f ≥

∫
g

(refer to page 256 for Lebesgue counterpart)
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Lebesgue convergence theorem

• Lebesgue convergence theorem - for integral, g, over E and sequence of measurable

functions, ⟨fn⟩, with lim fn(x) = f(x) a.e. on E, if

|fn(x)| ≤ g(x)

then ∫
E

f = lim

∫
E

fn

(refer to page 257 for Lebesgue counterpart)
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Setwise convergence of sequence of measures

• preceding convergence theorems assume fixed measure, µ

• can generalize by allowing measure to vary

• given measurable space, (X,B), sequence of set functions, ⟨µn⟩, defined on B,

satisfying

(∀E ∈ B)(limµnE = µE)

for some set function, µ, defined on B, said to converge setwise to µ
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General convergence theorems

• generalization of Fatou’s leamma - for measurable space, (X,B), sequence of

measures, ⟨µn⟩, defined on B, converging setwise to µ, defined on B, and sequence

of nonnegative functions, ⟨fn⟩, each measurable with respect to µn, converging

pointwise to function, f , measurable with respect to µ (compare with Fatou’s lemma

on page 404) ∫
fdµ ≤ lim inf

∫
fndµn

• generalization of Lebesgue convergence theorem - for measurable space, (X,B),

sequence of measures, ⟨µn⟩, defined on B, converging setwise to µ, defined on B, and

sequences of functions, ⟨fn⟩ and ⟨gn⟩, each of fn and gn, measurable with respect to

µn, converging pointwise to f and g, measurable with respect to µ, respectively, such

that (compare with Lebesgue convergence theorem on page 408)

lim

∫
gndµn =

∫
gdµ < ∞

satisfy

lim

∫
fndµn =

∫
fµ
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Lp spaces

• for complete measure space, (X,B, µ)

– space of measurable functions on X with with
∫
|f |p < ∞, for which element

equivalence is defined by being equal a.e., called Lp spaces denoted by Lp(µ)

– space of bounded measure functions, called L∞ space denoted by L∞(µ)

• norms

– for p ∈ [1,∞)

∥f∥p =

(∫
|f |pdµ

)1/p

– for p = ∞

∥f∥∞ = ess sup|f | = inf {|g(x)||measurable g with g = f a.e.}

• for p ∈ [1,∞], spaces, Lp(µ), are Banach spaces
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Hölder’s inequality and Littlewood’s second principle

• Hölder’s inequality - for p, q ∈ [1,∞] with 1/p + 1/q = 1, f ∈ Lp(µ) and

g ∈ Lq(µ) satisfy fg ∈ L1(µ) and

∥fg∥1 =

∫
|fg|dµ ≤ ∥f∥p∥g∥q

(refer to page 268 for normed spaces counterpart)

• complete measure space version of Littlewood’s second principle - for p ∈ [1,∞)

(∀f ∈ L
p
(µ), ϵ > 0)

(∃ simple function φ vanishing outside set of finite measure)

(∥f − φ∥p < ϵ)

(refer to page 271 for normed spaces counterpart)
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Riesz representation theorem

• Riesz representation theorem - for p ∈ [1,∞) and bounded linear functional, F , on

Lp(µ) and σ-finite measure, µ, exists unique g ∈ Lq(µ) where 1/p+ 1/q = 1 such

that

F (f) =

∫
fgdµ

where ∥F∥ = ∥g∥q

(refer to page 273 for normed spaces counterpart)

• if p ∈ (1,∞), Riesz representation theorem holds without assumption of σ-finiteness

of measure
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General measures

• consider some ways of defining measures on σ-algebra

• recall that for Lebesgue measure

– define measure for open intervals

– define outer measure

– define notion of measurable sets

– finally derive Lebesgue measure

• one can do similar things in general, e.g.,

– derive measure from outer measure

– derive outer measure from measure defined on algebra of sets
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Outer measure

• set function, µ∗ : P(X) → [0,∞], for space X, having following properties, called

outer measure

– µ∗∅ = 0

– A ⊂ B ⇒ µ∗A ≤ µ∗B (monotonicity)

– E ⊂
⋃∞
n=1En ⇒ µ∗E ≤

∑∞
n=1 µ

∗En (countable subadditivity)

• µ∗ with µ∗X < ∞ called finite

• set E ⊂ X satisfying following property, said to be measurable with respect to µ∗

(∀A ⊂ X)(µ
∗
(A) = µ

∗
(A ∩ E) + µ

∗
(A ∩ Ẽ))

• class, B, of µ∗-measurable sets is σ-algebra

• restriction of µ∗ to B is complete measure on B
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Extension to measure from measure on an algebra

• set function, µ : A → [0,∞], defined on algebra, A , having following properties,

called measure on an algebra

– µ(∅) = 0

– (∀ disjoint ⟨An⟩ ⊂ A with
⋃
An ∈ A ) (µ (

⋃
An) =

∑
µAn)

• measure on an algebra, A , is measure if and only if A is σ-algebra

• can extend measure on an algebra to measure defined on σ-algebra, B, containing A ,

by

– constructing outer measure µ∗ from µ

– deriving desired extension µ̄ induced by µ∗

– process by which constructing µ∗ from µ similar to constructing Lebesgue outer

measure from lengths of intervals
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Outer measure constructed from measure on an algebra

— given measure, µ, on an algebra, A

• define set function, µ∗ : P(X) → [0,∞], by

µ
∗
E = inf

⟨An⟩⊂A , E⊂
⋃
An

∑
µAn

• µ∗ called outer measure induced by µ

— then

• for A ∈ A and ⟨An⟩ ⊂ A with A ⊂
⋃
An, µA ≤

∑
µAn

• hence, (∀A ∈ A )(µ∗A = µA)

• µ∗ is outer measure

• every A ∈ A is measurable with respect to µ∗
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Regular outer measure

• for algebra, A

– Aσ denote sets that are countable unions of sets of A
– Aσδ denote sets that are countable intersections of sets of Aσ

• given measure, µ, on an algebra, A and outer measure, µ∗ induced by µ, for every

E ⊂ X and every ϵ > 0, exists A ∈ Aσ and B ∈ Aσδ with E ⊂ A and E ⊂ B

µ
∗
A ≤ µ

∗
E + ϵ and µ

∗
E = µ

∗
B

• outer measure, µ∗, with below property, said to be regular

(∀E ⊂ X, ϵ > 0)(∃ µ∗-measurable set A with E ⊂ A)(µ
∗
A ⊂ µ

∗
E + ϵ)

• every outer measure induced by measure on an algebra is regular outer measure
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Carathéodory theorem

— given measure, µ, on an algebra, A and outer measure, µ∗ induced by µ

• E ⊂ X is µ∗-measurable if and only if exist A ∈ Aσδ and B ⊂ X with µ∗B = 0

such that

E = A ∼ B

– for B ⊂ X with µ∗B = 0, exists C ∈ Aσδ with µ
∗C = 0 such that B ⊂ C

• Carathéodory theorem - restriction, µ̄, of µ∗ to µ∗-measurable sets if extension of µ

to σ-algebra containing A

– if µ is finite or σ-finite, so is µ̄ respectively

– if µ is σ-finite, µ̄ is only measure on smallest σ-algebra containing A which is

extension of µ
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Product measures

• for countable disjoint collection of measurable rectangles, ⟨(An × Bn)⟩, whose union

is measurable rectangle, A× B

λ(A× B) =
∑

λ(An × Bn)

• for x ∈ X and E ∈ Rσδ

Ex = {y|⟨x, y⟩ ∈ E}
is measurable subset of Y

• for E ⊂ Rσδ with µ× ν(E) < ∞, function, g, defined by

g(x) = νEx

is measurable function of x and ∫
gdµ = µ× ν(E)

• XXX
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Carathéodory outer measures

• set, X, of points and set, Γ, of real-valued functions on X

• two sets for which exist a > b such that function, φ, greater than a on one set and

less than b on the other set, said to be separated by function, φ

• outer measure, µ∗, with (∀A,B ⊂ X separated by f ∈ Γ)(µ∗(A ∪ B) = µ∗A +

µ∗B), called Carathéodory outer measure with respect to Γ

• outer measure, µ∗, on metric space, ⟨X, ρ⟩, for which µ∗(A∪B) = µ∗A+ µ∗B for

A,B ⊂ X with ρ(A,B) > 0, called Carathéodory outer measure for X or metric

outer measure

• for Carathéodory outer measure, µ∗, with respect to Γ, every function in Γ is

µ∗-measurable

• for Carathéodory outer measure, µ∗, for metric space, ⟨X, ρ, ⟩, every closed set (hence

every Borel set) is measurable with respect to µ∗
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Measurable functions

– denote n-dimensional Borel sets by Rn

• for two measurable spaces, (Ω,F ) and (Ω′,F ′), function, f : Ω → Ω′ with(
∀A′ ∈ F ′) (

f
−1

(A
′
) ∈ F

)
said to be measurable with respect to F/F ′ (thus, measurable functions defined on

page 240 and page 396 can be said to be measurable with respect to B/R)

• when Ω = Rn in (Ω,F ), F is assumed to be Rn, and sometimes drop Rn

– thus, e.g., we say f : Ω → Rn is measurable with respect to F (instead of F/Rn)

• measurable function, f : Rn → Rm (i.e., measurable with respect to Rn/Rm), called

Borel functions

• f : Ω → Rn is measurable with respect to F/Rn if and only if every component,

fi : Ω → R, is measurable with respect to F/R
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Probability (measure) spaces

• set function, P : F → [0, 1], defined on algebra, F , of set Ω, satisfying following

properties, called probability measure (refer to page 388 for resumblance with measurable

spaces)

– (∀A ∈ F )(0 ≤ P (A) ≤ 1)

– P (∅) = 0, P (Ω) = 1

– (∀ disjoint ⟨An⟩ ⊂ F )(P (
⋃
An) =

∑
P (An))

• for σ-algebra, F , (Ω,F , P ), called probability measure space or probability space

• set A ∈ F with P (A) = 1, called a support of P
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Dynkin’s π-λ theorem

• class, P , of subsets of Ω closed under finite intersection, called π-system, i.e.,

– (∀A,B ∈ P)(A ∩ B ∈ P)

• class, L, of subsets of Ω containing Ω closed under complements and countable disjoint

unions called λ-system

– Ω ∈ L
– (∀A ∈ L)(Ã ∈ L)

– (∀ disjoint ⟨An⟩)(
⋃
An ∈ L)

• class that is both π-system and λ-system is σ-algebra

• Dynkin’s π-λ theorem - for π-system, P , and λ-system, L, with P ⊂ L,

σ(P) ⊂ L

• for π-system, P, two probability measures, P1 and P2, on σ(P), agreeing P, agree

on σ(P)
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Limits of Events

Theorem 63. [convergence-of-events] no for sequence of subsets, ⟨An⟩,

P (lim inf An) ≤ lim inf P (An) ≤ lim supP (An) ≤ P (lim supAn)

- for ⟨An⟩ converging to A

limP (An) = P (A)

Theorem 64. [independence-of-smallest-sig-alg] no for sequence of π-systems, ⟨An⟩,
⟨σ(An)⟩ is independent
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Probabilistic independence

– given probability space, (Ω,F , P )

• A,B ∈ F with

P (A ∩ B) = P (A)P (B)

said to be independent

• indexed collection, ⟨Aλ⟩, with

(∀n ∈ N, distinct λ1, . . . , λn ∈ Λ)

(
P

(
n⋂
i=1

Aλi

)
=

n∏
i=1

P (Aλi
)

)

said to be independent
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Independence of classes of events

• indexed collection, ⟨Aλ⟩, of classes of events (i.e., subsets) with

(∀Aλ ∈ Aλ) (⟨Aλ⟩ are independent)

said to be independent

• for independent indexed collection, ⟨Aλ⟩, with every Aλ being π-sytem, ⟨σ(Aλ)⟩ are

independent

• for independent (countable) collection of events, ⟨⟨Ani⟩∞i=1⟩
∞
n=1

, ⟨Fn⟩∞n=1 with

Fn = σ(⟨Ani⟩∞i=1) are independent
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Borel-Cantelli lemmas

• Lemma 19. [first Borel-Cantelli] for sequence of events, ⟨An⟩, with
∑
P (An)

converging

P (lim supAn) = 0

• Lemma 20. [second Borel-Cantelli] for independent sequence of events, ⟨An⟩, with∑
P (An) diverging

P (lim supAn) = 1
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Tail events and Kolmogorov’s zero-one law

• for sequence of events, ⟨An⟩

T =

∞⋂
n=1

σ (⟨Ai⟩∞i=n)

called tail σ-algebra associated with ⟨An⟩; its lements are called tail events

• Kolmogorov’s zero-one law - for independent sequence of events, ⟨An⟩ every event in

tail σ-algebra has probability measure either 0 or 1
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Product probability spaces

• for two measure spaces, (X,X , µ) and (Y,Y , ν), want to find product measure, π,

such that

(∀A ∈ X , B ∈ Y ) (π(A× B) = µ(A)ν(B))

– e.g., if both µ and ν are Lebesgue measure on R, π will be Lebesgue measure on R2

• A× B for A ∈ X and B ∈ Y is measurable rectangle

• σ-algebra generated by measurable rectangles denoted by

X × Y

– thus, not Cartesian product in usual sense

– generally much larger than class of measurable rectangles
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Sections of measurable subsets and functions

for two measure spaces, (X,X , µ) and (Y,Y , ν)

• sections of measurable subsets

– {y ∈ Y |(x, y) ∈ E} is section of E determined by x

– {x ∈ X|(x, y) ∈ E} is section of E determined by y

• sections of measurable functions - for measurable function, f , with respect to X × Y

– f(x, ·) is section of f determined by x

– f(·, y) is section of f determined by y

• sections of measurable subsets are measurable

– (∀x ∈ X,E ∈ X × Y ) ({y ∈ Y |(x, y) ∈ E} ∈ Y )

– (∀y ∈ Y,E ∈ X × Y ) ({x ∈ X|(x, y) ∈ E} ∈ X )

• sections of measurable functions are measurable

– f(x, ·) is measurable with respect to Y for every x ∈ X

– f(·, y) is measurable with respect to X for every y ∈ Y

Searching for Universal Truths - Measure-theoretic Treatment of Probabilities - Probability Measure 434



Sunghee Yun August 4, 2025

Product measure

for two σ-finite measure spaces, (X,X , µ) and (Y,Y , ν)

• two functions defined below for every E ∈ X × Y are σ-finite measures

– π′(E) =
∫
X
ν{y ∈ Y |(x, y) ∈ E}dµ

– π′′(E) =
∫
Y
µ{x ∈ X|(x, y) ∈ E}dν

• for every measurable rectangle, A× B, with A ∈ X and B ∈ Y

π
′
(A× B) = π

′′
(A× B) = µ(A)ν(B)

(use conventions in page 28 for extended real values)

• indeed, π′(E) = π′′(E) for every E ∈ X × Y ; let π = π′ = π′′

• π is

– called product measure and denoted by µ× ν

– σ-finite measure

– only measure such that π(A× B) = µ(A)ν(B) for every measurable rectangle
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Fubini’s theorem

• suppose two σ-finite measure spaces, (X,X , µ) and (Y,Y , ν) - define

– X0 = {x ∈ X|
∫
Y
|f(x, y)|dν < ∞} ⊂ X

– Y0 = {y ∈ Y |
∫
X
|f(x, y)|dν < ∞} ⊂ Y

• Fubini’s theorem - for nonnegative measurable function, f , following are measurable

with respect to X and Y respectively

g(x) =

∫
Y

f(x, y)dν, h(y) =

∫
X

f(x, y)dµ

and following holds∫
X×Y

f(x, y)dπ =

∫
X

(∫
Y

f(x, y)dν

)
dµ =

∫
Y

(∫
X

f(x, y)dµ

)
dν

– for f , (not necessarily nonnegative) integrable function with respect to π

– µ(X ∼ X0) = 0, ν(Y ∼ Y0) = 0

– g and h are finite measurable on X0 and Y0 respectively

– (above) equalities of double integral holds
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Random variables

– for probability space, (Ω,F , P ),

• measurable function (with respect to F/R), X : Ω → R, called random variable

• measurable function (with respect to F/Rn), X : Ω → Rn, called random vector

– when expressing X(ω) = (X1(ω), . . . , Xn(ω)), X is measurable if and only if

every Xi is measurable

– thus, n-dimensional random vaector is simply n-tuple of random variables

• smallest σ-algebra with respect to which X is measurable, called σ-algebra generated

by X and denoted by σ(X)

– σ(X) consists exactly of sets, {ω ∈ Ω|X(ω) ∈ H}, for H ∈ Rn

– random variable, Y , is measurable with respect to σ(X) if and only if exists

measurable function, f : Rn → R such that Y (ω) = f(X(ω)) for all ω, i.e.,

Y = f ◦X
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Probability distributions for random variables

• probability measure on R, µ = PX−1, i.e.,

µ(A) = P (X ∈ A) for A ∈ R

called distribution or law of random variable, X

• function, F : R → [0, 1], defined by

F (x) = µ(−∞, x] = P (X ≤ x)

called distribution function or cumulative distribution function (CDF) of X

• Borel set, S, with P (S) = 1, called support

• random variable, its distribution, its distribution function, said to be discrete when has

countable support
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Probability distribution of mappings of random variables

• for measurable g : R → R,

(∀A ∈ R)
(
Prob (g(X) ∈ A) = Prob

(
X ∈ g

−1
(A)
)

= µ(g
−1

(A))
)

hence, g(X) has distribution of µg−1
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Probability density for random variables

• Borel function, f : R → R+, satisfying

(∀A ∈ R)

(
µ(A) = P (X ∈ A) =

∫
A

f(x)dx

)
called density or probability density function (PDF) of random variable

• above is equivalent to

(∀a < b ∈ R)

(∫ b

a

f(x)dx = P (a < X ≤ b) = F (b) − F (a)

)

(refer to statement on page 427)

– note, though, F does not need to differentiate to f everywhere; only f required to

integrate properly

– if F does differentiate to f and f is continuous, fundamental theorem of calculus

implies f indeed is density for F
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Probability distribution for random vectors

• (similarly to random variables) probability measure on Rn, µ = PX−1, i.e.,

µ(A) = P (X ∈ A) for A ∈ Bk

called distribution or law of random vector, X

• function, F : Rk → [0, 1], defined by

F (x) = µSx = P (X ⪯ x)

where

Sx = {ω ∈ Ω|X(ω) ⪯ x} = {ω ∈ Ω|Xi(ω) ≤ xi}
called distribution function or cumulative distribution function (CDF) of X

• (similarly to random variables) random vector, its distribution, its distribution function,

said to be discrete when has countable support
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Marginal distribution for random vectors

• (similarly to random variables) for measurable g : Rn → Rm

(∀A ∈ Rm
)
(
Prob (g(X) ∈ A) = Prob

(
X ∈ g

−1
(A)
)

= µ(g
−1

(A))
)

hence, g(X) has distribution of µg−1

• for gi : R
n → R with gi(x) = xi

(∀A ∈ R) (Prob (g(X) ∈ A) = Prob (Xi ∈ A))

• measure, µi, defined by µi(A) = Prob (Xi ∈ A), called (i-th) marginal distribution

of X

• for µ having density function, f : Rn → R+, density function of marginal distribution

is

fi(x) =

∫
Rn−1

f(x−i)dµ−i

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) and similarly for dµ−i
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Independence of random variables

• random variables, X1, . . . , Xn, with independent σ-algebras generated by them, said

to be independent

(refer to page 430 for independence of collections of subsets)

– because σ(Xi) = X−1
i (R) = {X−1

i (H)|H ∈ R}, independent if and only if

(∀H1, . . . , Hn ∈ R)
(
P (X1 ∈ H1, . . . , Xn ∈ Hn) =

∏
P (Xi ∈ Hi)

)
i.e.,

(∀H1, . . . , Hn ∈ R)
(
P
(⋂

X
−1
i (Hi)

)
=
∏

P
(
X

−1
i (Hi)

))
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Equivalent statements of independence of random variables

• for random variables, X1, . . . , Xn, having µ and F : Rn → [0, 1] as their

distribution and CDF, with each Xi having µi and Fi : R → [0, 1] as its distribution

and CDF, following statements are equivalent

– X1, . . . , Xn are independent

– (∀H1, . . . , Hn ∈ R)
(
P
(⋂

X−1
i (Hi)

)
=
∏
P
(
X−1
i (Hi)

))
– (∀H1, . . . , Hn ∈ R) (P (X1 ∈ H1, . . . , Xn ∈ Hn) =

∏
P (Xi ∈ Hi))

– (∀x ∈ Rn) (P (X1 ≤ x1, . . . , Xn ≤ xn) =
∏
P (Xi ≤ xi))

– (∀x ∈ Rn) (F (x) =
∏
Fi(xi))

– µ = µ1 × · · · × µn

– (∀x ∈ Rn) (f(x) =
∏
fi(xi))
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Independence of random variables with separate σ-algebra

– given probability space, (Ω,F , P )

• random variables, X1, . . . , Xn, each of which is measurable with respect to each of

n independent σ-algebras, G1 ⊂ F , . . . , Gn ⊂ F respectively, are independent
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Independence of random vectors

• for random vectors, X1 : Ω → Rd1, . . . , Xn : Ω → Rdn, having µ and

F : Rd1 × · · · × Rdn → [0, 1] as their distribution and CDF, with each Xi having µi
and Fi : R

di → [0, 1] as its distribution and CDF, following statements are equivalent

– X1, . . . , Xn are independent

–
(
∀H1 ∈ Rd1, . . . , Hn ∈ Rdn

) (
P
(⋂

X−1
i (Hi)

)
=
∏
P
(
X−1
i (Hi)

))
–
(
∀H1 ∈ Rd1, . . . , Hn ∈ Rdn

)
(P (X1 ∈ H1, . . . , Xn ∈ Hn) =

∏
P (Xi ∈ Hi))

–
(
∀x1 ∈ Rd1, . . . , xn ∈ Rdn

)
(P (X1 ⪯ x1, . . . , Xn ⪯ xn) =

∏
P (Xi ⪯ xi))

–
(
∀x1 ∈ Rd1, . . . , xn ∈ Rdn

)
(F (x1, . . . , xn) =

∏
Fi(xi))

– µ = µ1 × · · · × µn

–
(
∀x1 ∈ Rd1, . . . , xn ∈ Rdn

)
(f(x1, . . . , xn) =

∏
fi(xi))
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Independence of infinite collection of random vectors

• infinite collection of random vectors for which every finite subcollection is independent,

said to be independent

• for independent (countable) collection of random vectors, ⟨⟨Xni⟩∞i=1⟩
∞
n=1

, ⟨Fn⟩∞n=1

with Fn = σ(⟨Xni⟩∞i=1) are independent

Searching for Universal Truths - Measure-theoretic Treatment of Probabilities - Random Variables 448



Sunghee Yun August 4, 2025

Probability evaluation for two independent random vectors

Theorem 65. [Probability evaluation for two independent random vectors] for independent

random vectors, X and Y , with distributions, µ and ν, in Rn and Rm respectively(
∀B ∈ Rn+m

) (
Prob ((X,Y ) ∈ B) =

∫
Rn

Prob ((x, Y ) ∈ B) dµX

)
and (

∀A ∈ Rn
, B ∈ Rn+m

)
(
Prob (X ∈ A, (X,Y ) ∈ B) =

∫
A

Prob ((x, Y ) ∈ B) dµX

)
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Sequence of random variables

Theorem 66. [squence of random variables] for sequence of probability measures on

R, ⟨µn⟩, exists probability space, (X,Ω, P ), and sequence of independent random

variables in R, ⟨Xn⟩, such that each Xn has µn as distribution
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Expected values
Definition 130. [expected values] for random variable, X, on (Ω,F , P ), integral of

X with respect to measure, P

EX =

∫
XdP =

∫
Ω

X(ω)dP

called expected value of X

• EX is

– always defined for nonnegative X

– for general case

- defined, or

- X has an expected value if either EX+ < ∞ or EX− < ∞ or both, in which

case, EX = EX+ − EX−

• X is integrable if and only if E |X| < ∞
• limits

– if ⟨Xn⟩ is dominated by integral random variable or they are uniformly integrable,

EXn converges to EX if Xn converges to X in probability
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Markov and Chebyshev’s inequalities

Inequality 8. [Markov inequality] for random variable, X, on (Ω,F , P ),

Prob (X ≥ α) ≤
1

α

∫
X≥α

XdP ≤
1

α
EX

for nonnegative X, hence

Prob (|X| ≥ α) ≤
1

αn

∫
|X|≥α

|X|ndP ≤
1

αn
E |X|n

for general X

Inequality 9. [Chebyshev’s inequality] as special case of Markov inequality,

Prob (|X − EX| ≥ α) ≤
1

α2

∫
|X−EX|≥α

(X − EX)
2
dP ≤

1

α2
VarX

for general X
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Jensen’s, Hölder’s, and Lyapunov’s inequalities

Inequality 10. [Jensen’s inequality] for random variable, X, on (Ω,F , P ), and

convex function, φ

φ (EX)Prob (X ≥ α) ≤
1

α

∫
X≥α

XdP ≤
1

α
EX

Inequality 11. [Holder’s inequality] for two random variables, X and Y , on

(Ω,F , P ), and p, q ∈ (1,∞) with 1/p+ 1/q = 1

E |XY | ≤ (E |X|p)1/p (E |X|q)1/q

Inequality 12. [Lyapunov’s inequality] for random variable, X, on (Ω,F , P ), and

0 < α < β

(E |X|α)1/α ≤
(
E |X|β

)1/β

• note Hölder’s inequality implies Lyapunov’s inequality
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Maximal inequalities

Theorem 67. [Kolmogorov’s zero-one law] if A ∈ F =
⋂∞
n=1 σ(Xn, Xn+1, . . .)

for independent ⟨Xn⟩,
Prob (A) = 0 ∨ Prob (A) = 1

– define Sn =
∑
Xi

Inequality 13. [Kolmogorov’s maximal inequality] for independent ⟨Xi⟩ni=1 with

EXi = 0 and VarXi < ∞ and α > 0

Prob (maxSi ≥ α) ≤
1

α
VarSn

Inequality 14. [Etemadi’s maximal inequality] for independent ⟨Xi⟩ni=1 and α > 0

Prob (max |Si| ≥ 3α) ≤ 3maxProb (|Si| ≥ α)
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Moments

Definition 131. [moments and absolute moments] for random variable, X, on

(Ω,F , P ), integral of X with respect to measure, P

EX
n
=

∫
x
k
dµ =

∫
x
k
dF (x)

called k-th moment of X or µ or F , and

E |X|n =

∫
|x|kdµ =

∫
|x|kdF (x)

called k-th absolute moment of X or µ or F

• if E |X|n < ∞, E |X|k < ∞ for k < n

• EXn defined only when E |X|n < ∞
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Moment generating functions

Definition 132. [moment generating function] for random variable, X, on

(Ω,F , P ), M : C → C defined by

M(s) = E
(
e
sX
)

=

∫
e
sx
dµ =

∫
e
sx
dF (x)

called moment generating function of X

• n-th derivative of M with respect to s is M (n)(s) = dn

dsnF (s) = E
(
XnesX

)
=∫

xesxdµ

• thus, n-th derivative of M with respect to s at s = 0 is n-th moment of X

M
(n)

(0) = EX
n

• for independent random variables, ⟨Xi⟩ni=1, moment generating function of
∑
Xi∏

Mi(s)
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Convergences of random variables

Definition 133. [convergence with probability 1] random variables, ⟨Xn⟩, with

Prob (limXn = X) = P ({ω ∈ Ω| limXn(ω) = X(ω)}) = 1

said to converge to X with probability 1 and denoted by Xn → X a.s.

Definition 134. [convergence in probability] random variables, ⟨Xn⟩, with

(∀ϵ > 0) (limProb (|Xn −X| > ϵ) = 0)

said to converge to X in probability

Definition 135. [weak convergence] distribution functions, ⟨Fn⟩, with

(∀x in domain of F ) (limFn(x) = F (x))

said to converge weakly to distribution function, F , and denoted by Fn ⇒ F
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Definition 136. [converge in distribution] When Fn ⇒ F , associated random

variables, ⟨Xn⟩, said to converge in distribution to X, associated with F , and denoted

by Xn ⇒ X

Definition 137. [weak convergence of measures] for measures on (R,R), ⟨µn⟩,
associated with distribution functions, ⟨Fn⟩, respectively, and measure on (R,R), µ,

associated with distribution function, F , we denote

µn ⇒ µ

if

(∀A = (−∞, x] with x ∈ R) (limµn(A) = µ(A))

• indeed, if above equation holds for A = (−∞, x), it holds for many other subsets
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Relations of different types of convergences of random variables

Proposition 33. [relations of convergence of random variables] convergence with

probability 1 implies convergence in probability, which implies Xn ⇒ X, i.e.

Xn → X a.s., i.e., Xn converge to X with probability 1

⇒ Xn converge to X in probability

⇒ Xn ⇒ X, i.e., Xn converge to X in distribution,
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Necessary and sufficient conditions for convergence of probability

Xn converge in probability

if and only if

(∀ϵ > 0) (Prob (|Xn −X| > ϵ i.o) = Prob (lim sup |Xn −X| > ϵ) = 0)

if and only if

(
∀ subsequence

〈
Xnk

〉)
(
∃ its subsequence

〈
Xnkl

〉
converging to f with probability 1

)
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Necessary and sufficient conditions for convergence in distribution

Xn ⇒ X, i.e., Xn converge in distribution

if and only if

Fn ⇒ F, i.e., Fn converge weakly

if and only if

(∀A = (−∞, x] with x ∈ R) (limµn(A) = µ(A))

if and only if

(∀x with Prob (X = x) = 0) (limProb (Xn ≤ x) = Prob (X ≤ x))
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Strong law of large numbers

– define Sn =
∑n

i=1Xi

Theorem 68. [strong law of large numbers] for sequence of independent and

identically distributed (i.i.d.) random variables with finite mean, ⟨Xn⟩

1

n
Sn → EX1

with probability 1

• strong law of large numbers also called Kolmogorov’s law

Corollary 27. [strong law of large numbers] for sequence of independent and

identically distributed (i.i.d.) random variables with EX−
1 < ∞ and EX+

1 = ∞
(hence, EX = ∞)

1

n
Sn → ∞

with probability 1
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Weak law of large numbers

– define Sn =
∑n

i=1Xi

Theorem 69. [weak law of large numbers] for sequence of independent and identically

distributed (i.i.d.) random variables with finite mean, ⟨Xn⟩

1

n
Sn → EX1

in probability

• because convergence with probability 1 implies convergence in probability

(Proposition 33), strong law of large numbers implies weak law of large numbers
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Normal distributions

– assume probability space, (Ω,F , P )

Definition 138. [normal distributions] Random variable, X : Ω → R, with

(A ∈ R)

(
Prob (X ∈ A) =

1
√
2πσ

∫
A

e
−(x−c)2/2

dµ

)
where µ = PX−1 for some σ > 0 and c ∈ R, called normal distribution and denoted by

X ∼ N (c, σ2)

– note EX = c and VarX = σ2

– called standard normal distribution when c = 0 and σ = 1
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Multivariate normal distributions

– assume probability space, (Ω,F , P )

Definition 139. [multivariate normal distributions] Random variable, X : Ω → Rn,
with

(A ∈ Rn
)

(
Prob (X ∈ A) =

1√
(2π)n

√
detΣ

∫
A

e
−(x−c)TΣ−1(x−c)/2

dµ

)

where µ = PX−1 for some Σ ≻ 0 ∈ Sn++ and c ∈ Rn, called (n-dimensional) normal

distribution, and denoted by X ∼ N (c,Σ)

– note that EX = c and covariance matrix is Σ
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Lindeberg-Lévy theorem

– define Sn =
∑n

Xi

Theorem 70. [Lindeberg-Levy theorem] for independent random variables, ⟨Xn⟩,
having same distribution with expected value, c, and same variance, σ2 < ∞,

(Sn − nc)/σ
√
n converges to standard normal distribution in distribution, i.e.,

Sn − nc

σ
√
n

⇒ N

where N is standard normal distribution

– Theorem 70 implies

Sn/n ⇒ c
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Limit theorems in Rn

Theorem 71. [equivalent statements to weak convergence] each of following statements

are equivalent to weak convergence of measures, ⟨µn⟩, to µ, on measurable space,

(Rk,Rk)

• lim
∫
fdµn =

∫
fdµ for every bounded continuous f

• lim supµn(C) ≤ µ(C) for every closed C

• lim inf µn(G) ≥ µ(G) for every open G

• limµn(A) = µ(A) for every µ-continuity A

Theorem 72. [convergence in distribution of random vector] for random vectors,

⟨Xn⟩, and random vector, Y , of k-dimension, Xn ⇒ Y , i.e., Xn converge to Y

in distribution if and only if (
∀z ∈ Rk

)(
z
T
Xn ⇒ z

T
Y
)
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Central limit theorem

– assume probability space, (Ω,F , P ) and define
∑n

Xi = Sn

Theorem 73. [central limit theorem] for random variables, ⟨Xn⟩, having same

distributions with EXn = c ∈ Rk and positive definite covariance matrix, Σ ≻ 0 ∈ Sk,
i.e., E(Xn−c)(Xn−c)T = Σ, where Σii < ∞ (hence Σ ≺ MIn for someM ∈ R++

due to Cauchy-Schwarz inequality),

(Sn − nc)/
√
n converges in distribution to Y

where Y ∼ N (0,Σ)

(proof can be found in Proof 20)
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Convergence of random series

• for independent ⟨Xn⟩, probability of
∑
Xn converging is either 0 or 1

• below characterize two cases in terms of distributions of individual Xn

Theorem 74. [convergence with probability 1 for random series] for independent

⟨Xn⟩ with EXn = 0 and VarXn < ∞∑
Xn converges with probability 1

Theorem 75. [convergence conditions for random series] for independent ⟨Xn⟩,∑
Xn converges with probability 1 if and only if they converges in probability

• define trucated version of Xn by X(c)
n , i.e., XnI|Xn|≤c

Theorem 76. [convergence conditions for truncated random series] for independent

⟨Xn⟩,
∑
Xn converge with probability 1 if all of

∑
Prob (|Xn| > c),

∑
E(X(c)

n ),

and
∑

Var(X(c)
n ) converge for some c > 0
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Lines and line segmenets

Definition 140. [lines] for some x, y ∈ Rn

{θx+ (1 − θ)y|θ ∈ R}

called line going through x and y

Definition 141. [line segmenets] for some x, y ∈ Rn

{θx+ (1 − θ)y|0 ≤ θ ≤ 1 ∈ R}

called line segment connecting x and y
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Affine sets

Definition 142. [affine sets] set, C ⊂ Rn, every line going through any two points in

which is contained in C, i.e.

(∀x, y ∈ C) ({θx+ (1 − θ)y|θ ∈ R} ⊂ C)

called affine set

Definition 143. [affine hulls] for set, C ⊂ Rn, intersection of all affine sets containing

C, called affine hull of C, denoted by aff C, which is equal to set of all affine combinations

of points in C, i.e.⋃
n∈N

{θ1x1 + · · · + θnxn|x1, . . . , xn ∈ C, θ1 + · · · + θn = 1}

Definition 144. [affine dimension] for C ⊂ Rn, dimension of aff C, called affine

dimension
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Relative interiors and boundaries

Definition 145. [relative interiors of sets] for C ⊂ Rn,⋃
O:open,O∩aff C⊂C

O ∩ aff C

or equivalently

{x|(∃ϵ > 0)(∀y ∈ aff C, ∥y − x∥ < ϵ)(y ∈ C)}

is called relative interior of C or interior relative to C, denoted by relintC

Definition 146. [relative boundaries of sets] for C ⊂ Rn, C ∼ relintC, called

relative boundary of C
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Convex sets

Definition 147. [convex sets] set, C ⊂ Rn, every line segment connecting any two

points in which is contained in C, i.e.

(∀x, y ∈ C) (∀0 ≤ θ ≤ 1) (θx+ (1 − θ)y ∈ C)

called convex set

Definition 148. [convex hulls] for set, C ⊂ Rn, intersection of all convex sets

containing C, called convex hull of C, denoted by ConvC, which is equal to set

of all convex combinations of points in C, i.e.⋃
n∈N

{θ1x1 + · · · + θnxn|x1, . . . , xn ∈ C, θ1 + · · · + θn = 1, θ1, . . . , θn > 0}

• convex hull (of course) is convex set
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Cones

Definition 149. [cones] set, C ⊂ Rn, for which

(∀x ∈ C, θ ≥ 0) (θx ∈ C)

called cone or nonnegative homogeneous

Definition 150. [convex cone] set, C ⊂ Rn, which is both convex and cone, called

convex cone; C is convex cone if and only if

(∀x, y ∈ C, θ, ξ ≥ 0) (θx+ ξy ∈ C)

• convex cone (of course) is convex set

• examples of convex cones: Rn+, R
n
++, S

n
+, and Sn++
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Hyperplanes and half spaces

Definition 151. [hyperplanes] n − 1 dimensional affine set in Rn, called hyperplane;

every hyperplane can be expressed as

{x ∈ Rn|aT = b}

for some a ̸= 0 ∈ Rn and b ∈ R

Definition 152. [half spaces] one of two sets divided by hyperplane, called half space;

every half space can be expressed as

{x ∈ Rn|aT ≤ b}

for some a ̸= 0 ∈ Rn and b ∈ R

• hyperplanes and half spaces are convex sets

Searching for Universal Truths - Convex Optimization - Convex Sets 478



Sunghee Yun August 4, 2025

Euclidean balls and ellipsoids

Definition 153. [Euclidean ball] set of all points distance of which from point, x ∈ Rn,
is no greater than r > 0, called (Euclidean) ball centered at x with radius, r, denoted by

B(x, r), i.e.

B(x, r) = {y ∈ Rn|∥y − x∥2 ≤ r}

Definition 154. [ellipsoids] ball elongated along n orthogonal axes, called ellipsoid, i.e.,

{y ∈ Rn|(y − x)
T
P

−1
(y − x) ≤ 1}

for some x ∈ Rn and P ∈ Sn++

• Euclidean balls and ellipsoids are convex sets
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Norm balls and norm cones

Definition 155. [norm ball] for norm, ∥ · ∥ : Rn → R+, set of all points distance of

which measured in the norm from point, x ∈ Rn, is no greater than r > 0, called norm

ball centered at x with radius, r, associated with norm, ∥ · ∥, i.e.

{y ∈ Rn|∥y − x∥ ≤ r}

Definition 156. [norm cone] for norm, ∥ · ∥ : Rn → R+, x ∈ Rn, and r > 0,

{(x, y) ∈ Rn × R|∥x∥ ≤ r} ⊂ Rn+1

called cone associated with norm, ∥ · ∥

Definition 157. [second-order cone] norm cone associated with Euclidean norm, called

second-order cone

• norm balls and norm cones are convex sets

Searching for Universal Truths - Convex Optimization - Convex Sets 480



Sunghee Yun August 4, 2025

Polyhedra

Definition 158. [polyhedra] intersection of finite number of hyperplanes and half spaces,

called polyhedron; every polyhedron can be expressed as

{x ∈ Rn|Ax ⪯ b, Cx = d}

for A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, d ∈ Rp

• polyhedron is convex set (by Proposition 34)
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Convexity preserving set operations

Proposition 34. [convexity preserving set operations]

• intersection preserves convexity

– for (any) collection of convex sets, C, ⋂
C∈C

C

is convex set (proof can be found in Proof 21)

• scalar scaling preserves convexity

– for convex set C

αC

is convex set for any α ∈ R

• sum preserves convexity

– for convex sets C and D

C +D

is convex set
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• direct product preserves convexity

– for convex sets C and D

C ×D

is convex set

• projection preserves convexity

– for convex set C ⊂ A× B

{x ∈ A|(∃y)((x, y) ∈ C)}

is convex

• image and inverse image by affine function preserve convexity

– for affine function f : A → B and convex sets C ⊂ A and D ⊂ B

f(C) & f
−1

(D)

are convex

• image and inverse image by linear-fractional function preserve convexity

Searching for Universal Truths - Convex Optimization - Convex Sets 483



Sunghee Yun August 4, 2025

– for convex sets C ⊂ Rn, D ⊂ Rm and linear-fractional function, g : Rn → Rm,
i.e., function defined by g(x) = (Ax+ b)/(cTx+ d) for A ∈ Rm×n, b ∈ Rm,
c ∈ Rn, and d ∈ R

g(C) & g
−1

(D)

are convex
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Proper cones and generalized inequalities

Definition 159. [proper cones] closed convex cone K which is

- solid, i.e., K◦ ̸= ∅
- pointed, i.e., x ∈ vK and −x ∈ K imply x = 0

called proper cone

• examples of proper cones: Rn+ and Sn+

Definition 160. [generalized inequalities] proper cone K defines generalized

inequalities
- (nonstrict) generalized inequality

x ⪯K y ⇔ y − x ∈ K

- strict generalized inequality

x ≺K y ⇔ y − x ∈ K
◦

• ⪯K and ≺K are partial orderings
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Convex sets induced by generalized inequalities

• for affine function g : Rn → Sm, i.e., f(x) = A0 + A1x1 + · · · + Anxn for some

A0, . . . , An ∈ Sm, f−1(Sn+) is convex (by Proposition 34), i.e.,

{x ∈ Rn|A0 + A1x1 + · · · + Anxn ⪰ 0} ⊂ Rn

is convex

• can negate each matrix Ai and have same results, hence

{x ∈ Rn|A0 + A1x1 + · · · + Anxn ⪯ 0} ⊂ Rn

is (also) convex
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Separating and supporting hyperplanes

Theorem 77. [separating hyperplane theorem] for nonempty disjoint convex sets C

and D, exists hyperplane which separates C and D, i.e.

(∃a ̸= 0 ∈ Rn, b ∈ R) (∀x ∈ C, y ∈ D)
(
a
T
x+ b ≥ 0 & a

T
y + b ≤ 0

)
Definition 161. [separating hyperplanes] for nonempty disjoint convex sets C and

D, hyperplane satisfying property in Theorem 77, called separating hyperplane, said to

separate C and D

Theorem 78. [supporting hyperplane theorem] for nonempty convex set C and x ∈
bdC, exists hyperplane passing through x, i.e.,

(∃a ̸= 0 ∈ Rn) (∀y ∈ C)
(
a
T
(y − x) ≤ 0

)
Definition 162. [supporting hyperplanes] for nonempty convex set C and x ∈ bdC,

hyperplane satisfied property in Theorem 78, called supporting hyperplane
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Dual cones

Definition 163. [dual cones] for cone K,

{x|∀y ∈ K, y
T
x ≥ 0}

called dual cone of K, denoted by K∗

• the figure illustrates x ∈ K∗ while z ̸∈ K∗
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Dual norms

Definition 164. [dual norms] for norm ∥ · ∥, fudnction defined by

y 7→ sup{yTx|∥x∥ ≤ 1}

called dual norm of ∥ · ∥, denoted by ∥ · ∥∗

• examples

– dual cone of subspace V ⊂ Rn is orthogonal complement of V , V ⊥, where

V ⊥ = {y|∀v ∈ V, vTy = 0}

– Rn+ and Sn+ are self-dual

– dual of norm cone is norm cone associated with dual norm, i.e., if K = {(x, t) ∈
Rn × R|∥x∥ ≤ t}

K = {(y, u) ∈ Rn × R|∥y∥∗ ≤ u}
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Properties of dual cones

Proposition 35. [properties of dual cones] for cones K, K1, and K2

- K∗ is closed and convex

- K1 ⊂ K2 ⇒ K∗
2 ⊂ K∗

1

- if K◦ ̸= ∅, K∗ is pointed

- if K is pointed, (K∗)
◦ ̸= ∅

- K∗∗ = (K∗)∗ is closure of convex hull of K,

- K∗ is closed and convex

thus,

- if K is closed and convex, K∗∗ = K

- dual of proper cone is proper cone

- for proper cone K, K∗∗ = K
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Dual generalized inequalities

• dual of proper cone is proper (Proposition 35), hence the dual also induces generalized

inequalities

Proposition 36. [generalized inequalities and dual generalized inequalities] for proper

cone K,

- x ⪯K y if and only if (∀λ ⪰K∗ 0)(λTx ≤ λTy)

- x ≺K y if and only if (∀λ ⪰K∗ 0 with λ ̸= 0)(λTx < λTy)

K∗∗ = K, hence above are equivalent to

- x ⪯K∗ y if and only if (∀λ ⪰K 0)(λTx ≤ λTy)

- x ≺K∗ y if and only if (∀λ ⪰K 0 with λ ̸= 0)(λTx < λTy)
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Theorem of alternative for linear strict generalized inequalities

Theorem 79. [theorem of alternative for linear strict generalized inequalities] for proper

cone K ⊂ Rm, A ∈ Rm×n, and b ∈ Rm,

Ax ≺K b

is infeasible if and only if exist nonzero λ ∈ Rm such that

λ ̸= 0, λ ⪰K∗ 0, A
T
λ = 0, λ

T
b ≤ 0

Above two inequality systems are alternative, i.e., for any data, A and b, exactly one of

them is feasible. (proof can be found in Proof 22)
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Convex functions

Definition 165. [convex functions]

- function f : Rn → R the domain of which is convex and which satisfies

(∀x, y ∈ dom f, 0 ≤ θ ≤ 1) (f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y))

said to be convex

- function f : Rn → R the domain of which is convex and which satisfies

(∀ distinct x, y ∈ dom f, 0 < θ < 1) (f(θx+ (1 − θ)y) < θf(x) + (1 − θ)f(y))

said to be strictly convex

Definition 166. [concave functions]

- function f : Rn → R the domain of which is convex where −f is convex, said to be

concave

- function f : Rn → R the domain of which is convex where −f is strictly convex,

said to be strictly concave
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Extended real-value extensions of convex functions

Definition 167. [extended real-value extension of convex functions] for convex function

f , function f̃ : Rn → R ∪ {∞} defined by

f̃(x) =

{
f(x) if x ∈ dom f

∞ if x ̸∈ dom f

called extended real-value extension of f

• using extended real-value extensions of convex functions, can drop “dom f” in

equations, e.g.,

– f is convex if and only if its extended-value extension f̃ satisfies

(∀x, y ∈ dom f, 0 ≤ θ ≤ 1) (f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y))

– f is strictly convex if and only if its extended-value extension f̃ satisfies

(∀ distinct x, y ∈ dom f, 0 < θ < 1) (f(θx+ (1 − θ)y) < θf(x) + (1 − θ)f(y))
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First-order condition for convexity

Theorem 80. [first-order condition for convexity] differentiable f , i.e., dom f is

open and gradient ∇f exists at every point in dom f , is

- convex if and only if dom f is convex and

(∀x, y ∈ dom f)
(
f(y) ≥ f(x) + ∇f(x)T (y − x)

)
- strictly convex if and only if dom f is convex and

(∀ distinct x, y ∈ dom f)
(
f(y) > f(x) + ∇f(x)T (y − x)

)
• Theorem 80 implies that for convex function f

– first-order Taylor approximation is global underestimator

– can derive global information from local information

- e.g., if ∇f(x) = 0, x is global minimizer

- explains remarkable properties of convex functions and convex optimization

problems
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Second-order condition for convexity

Theorem 81. [second-order condition for convexity] twice-differentiable f , i.e.,

dom f is open and Hessian ∇2f exists at every point in dom f , is convex if and

only if dom f is convex and

(∀x ∈ dom f)
(
∇2
f(x) ⪰ 0

)
- if dom f is convex and

(∀x ∈ dom f)
(
∇2
f(x) ≻ 0

)
it is strictly convex
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Convex function examples

- assume function f : Rn → R and dom f = Rn unlesss specified otherwise

• affine function, i.e., f(x) = aTx+ b for some a ∈ Rn and b ∈ R, is convex

• quadratic functions - if f(x) = xTPx+ qTx for some P ∈ Sn and q ∈ Rn

– f is convex if and only if P ⪰ 0

– f is strictly convex if and only if P ≻ 0

• exponential function, i.e., f(x) = exp(aTx + b) for some a ∈ Rn and b ∈ R, is

convex

• power, i.e., f(x) = xa for some a ≥ 1, is convex on R++

• power of absolute value, i.e., f(x) = |x|a for some a ≥ 1, is convex on R

• logarithm function, i.e., f(x) = log x, is concave on R++

• negative entropy, i.e.,

f(x) =

{
x log x if x > 0

0 if x = 0

is convex on R+
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• norm as function is convex (by definition of norms, i.e., triangle inequality & absolute

homogeneity)

• max function, i.e., f(x) = max(x1, . . . , xn}, is convex

• quadratic-over-linear function, f(x, y) = x2/y, is convex on R × R++

• log-sum-exp, f(x) = log(exp(x1) + · · · + exp(xn)), is convex

• geometric mean, f(x) = (
∏n

i=1 xi)
1/n, is concave on Rn++

• log-determinant, f(X) = log detX, is concave on Sn++
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Sublevel sets and superlevel sets

Definition 168. [sublevel sets] for function f and α ∈ R,

{x ∈ dom f |f(x) ≤ α}

called α-sublevel set of f

Definition 169. [superlevel sets] for function f and α ∈ R,

{x ∈ dom f |f(x) ≥ α}

called α-superlevel set of f

Proposition 37. [convexity of level sets]

- every sublevel set of convex function is convex

- and every superlevel set of concave function is convex

• note, however, converse is not true

– e.g., every sublevel set of log is convex, but log is concave
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Epigraphs and hypographs

Definition 170. [epigraphs] for function f ,

{(x, t)|x ∈ dom f, f(x) ≤ t}

called epigraph of f , denoted by epi f

Definition 171. [hypographs] for function f ,

{(x, t)|x ∈ dom f, f(x) ≥ t}

called hypograph of f , denoted by hypo f

Proposition 38. [graphs and convexity]

- function is convex if and only if its epigraph is convex

- function is concave if and only if its hypograph is convex
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Convexity preserving function operations

Proposition 39. [convexity preserving function operations]

• nonnegative weighted sum preserves convexity

– for convex functions f1, . . . , fn and nonnegative weights w1, . . . , wn

w1f1 + · · ·wnfn

is convex

• nonnegative weighted integration preserves convexity

– for measurable set Y , w : Y → R+, and f : X × Y where f(x, y) is convex in

x for every y ∈ Y and measurable in y for every x ∈ X∫
Y

w(y)f(x, y)dy

is convex

• pointwise maximum preserves convexity
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– for convex functions f1, . . . , fn

max{f1, . . . , fn}

is convex

• pointwise supremum preserves convexity

– for indexed family of convex functions {fλ}λ∈Λ

sup
λ∈Λ

fλ

is convex (one way to see this is epi supλ fλ =
⋂
λ epi fλ)

• composition

– suppose g : Rn → Rk, h : Rk → R, and f = h ◦ g
- f convex if h convex & nondecreasing in each argument, and gi convex

- f convex if h convex & nonincreasing in each argument, and gi concave

- f concave if h concave & nondecreasing in each argument, and gi concave

- f concave if h concave & nonincreasing in each argument, and gi convex

• minimization
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– for function f(x, y) convex in (x, y) and convex set C

inf
y∈C

f(x, y)

is convex provided it is bounded below where domain is {x|(∃y ∈ C)((x, y) ∈
dom f)} (proof can be found in Proof 23)

• perspective of convex function preserves convexity

– for convex function f : X → R, function g : X × R → R defined by

g(x, t) = tf(x/t)

with dom g = {(x, t)|x/t ∈ dom f, t > 0} is convex
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Convex functions examples

Proposition 39 implies

• piecewise-linear function is convex, i.e.

- max{aT1 x+ b1, . . . , a
T
mx+ bm} for some ai ∈ Rn and bi ∈ R is convex

• sum of k largest components is convex, i.e.

- x[1] + · · · + x[k] where x[i] denotes i-th largest component, is convex (since

f(x) = max{xi1 + · · · + xir|1 ≤ i1 < i2 < · · · < ir ≤ n})
• support function of set, i.e.,

- sup{xTy|y ∈ A} for A ⊂ Rn is convex

• distance (when measured by arbitrary norm) to farthest point of set

- sup{∥x− y∥|y ∈ A} for A ⊂ Rn is convex

• least-squares cost as function of weights

- inf
x∈Rn

∑n
i=1wi(a

T
i x− bi)

2 for some ai ∈ Rn and bi ∈ R is concave

- note that above function equals to
∑n

i=1wib
2
i−
∑n

i=1w
2
i b

2
ia
T
i

(∑n
j=1wjaja

T
j

)−1

ai

but not clear whether it is concave
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• maximum eigenvalue of symmetric matrix

- λmax(F (x)) = sup{yTF (x)y|∥y∥2 ≤ 1} where F : Rn → Sm is linear function

in x

• norm of matrix

- sup{uTG(x)v|∥u∥2 ≤ 1, ∥v∥2 ≤ 1} where G : Rn → Rm×n is linear function

in x

• distance (when measured by arbitrary norm) to convex set

- for convex set C, inf{∥x− y∥|y ∈ C}
• infimum of convex function subject to linear constraint

- for convex function h, inf{h(y)|Ay = x} is convex (since it is infy(h(y) +

IAy=x(x, y)))

• perspective of Euclidean norm squared

- map (x, t) 7→ xTx/t induces convex function in (x, t) for t > 0

• perspective of negative log

- map (x, t) 7→ −t log(x/t) induces convex function in (x, t) ∈ R2
++
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• perspective of convex function

- for convex function f : Rn → R, function g : Rn → R defined by

g(x) = (c
T
x+ d)f((Ax+ b)/(c

T
x+ d))

from some A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R with dom g =

{x|(Ax+ b)/(cTx+ d) ∈ dom f, cTx+ d > 0} is convex
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Conjugate functions

Definition 172. [conjugate functions] for function f

sup
y∈dom f

(x
T
y − f(y))

called conjugate function of f , denoted by f∗

• conjugate function is convex for any function f because it is supremum of linear (hence

convex) functions (in x) (Proposition 39)

Inequality 15. [Fenchel’s inequality] definition of conjugate function implies

f(x) + f
∗
(y) ≥ x

T
y

sometimes called Young’s inequality

Proposition 40. [conjugate of conjugate] for convex and closed function f

f
∗∗

= f

where closed function f is defined by function with closed epi f
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Conjugate function examples

• strictly convex quadratic function

– for f : Rn → R+ defined f(x) = xTQx/2 where Q ∈ Sn++,

f
∗
(x) = sup

y
(y

T
x− y

T
Qy/2) = (y

T
x− y

T
Qy/2)|y=Q−1x = x

T
Q

−1
x/2

which is also strictly convex quadratic function

• log-determinant

– for function f : Sn++ → R defined by f(X) = log detX−1

f
∗
(X) = sup

Y ∈Sn++

(TrXY + log detY ) = log det(−X)
−1 − n

where dom f∗ = −Sn++

• indicator function
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– for indicator function IA : Rn → {0,∞} with A ⊂ Rn

I
∗
A(x) = sup

y
(y

T
x− IA(y)) = sup{yTx|y ∈ A}

which is support function of A

• log-sum-exp function

– for function f : Rn → R defined by f(x) = log(
∑n

i=1 exp(xi))

f
∗
(x) =

n∑
i=1

xi log xi + Ix⪰0,1Tx=1(x)

• norm

– for norm function f : Rn → R+ defined by f(x) = ∥x∥

f
∗
(x) = sup

y
(y

T
x− ∥y∥) = I∥x∥∗≤1(x)

• norm squared
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– for function f : R → R+ defined by f(x) = ∥x∥2/2

f
∗
(x) = ∥x∥2

∗/2

• differentiable convex function

– for differentiable convex function f : Rn → R

f
∗
(x) = (y

∗
)
T∇f(y∗) − f(y

∗
)

where y∗ = argsupy(x
Ty − f(y))

• sum of independent functions

– for function f : Rn × Rm → R defined by f(x, y) = f1(x) + f2(y) where

f1 : Rn → R and f2 : Rm → R

f
∗
(x, y) = f

∗
1 (x) + f

∗
2 (y)
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Convex functions with respect to generalized inequalities

Definition 173. [K-convex functions] for proper cone K,

- function f satisfying

(∀x, y ∈ dom f, 0 ≤ θ ≤ 1) (f(θx+ (1 − θ)y) ⪯K θf(x) + (1 − θ)f(y))

called K-convex

- function f satisfying

(∀x ̸= y ∈ dom f, 0 < θ < 1) (f(θx+ (1 − θ)y) ≺K θf(x) + (1 − θ)f(y))

called strictly K-convex

Proposition 41. [dual characterization of K-convexity] for proper cone K

- function f is K-convex if and only if for every w ⪰K∗ 0, wTf is convex

- function f is strictly K-convex if and only if for every nonzero w ⪰K∗ 0, wTf is

strictly convex
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Matrix convexity

Definition 174. [matrix convexity] function of Rn into Sm which is K-convex where

K = Sm+ , called matrix convex

• examples of matrix convexity

– function of Rn×m into Sn+ defined by X 7→ XXT is matrix convex

– function of Sn++ into itself defined by X 7→ Xp is matrix convex for 1 ≤ p ≤ 2 or

−1 ≤ p ≤ 0, and matrix concave for 0 ≤ p ≤ 1

– function of Sn into Sn++ defined by X 7→ exp(X) is not matrix convex

– quadratic matrix function of Rm×n into Sn defined by X 7→ XTAX + BTX +

XTB + C for A ∈ Sm, B ∈ Rm×n, and C ∈ Sn is matrix convex when A ⪰ 0
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Optimization problems

Definition 175. [optimization problems] for f : F → R, q : Q → Rm, h : H → Rp

where F , Q, and H are subsets of common set X

minimize f(x)

subject to q(x) ⪯ 0

h(x) = 0

called optimization problem where x is optimization variable

- f , q, and h are objective function, inequality & equality contraint function

- q(x) ⪯ 0 and h(x) = 0 are inequality contraints and equality contraints

- D = F ∩Q ∩H is domain of optimization problem

- F = {x ∈ D|q(x) ⪯ 0, h(x) = 0}, called feasible set, x ∈ D, said to be feasible

if x ∈ F , optimization problem, said to be feasible if F ≠ ∅
- p∗ = inf{f(x)|x ∈ F}, called optimal value of optimization problem

- if optimization problem is infeasible, p∗ = ∞ (following convention that infimum of

empty set is ∞)

- if p∗ = −∞, optimization problem said to be unbounded
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Global and local optimalities

Definition 176. [global optimality] for optimization problem in Definition 175

- x ∈ F with f(x) = p∗, called (global) optimal point

- Xopt = {x ∈ F|f(x) = p∗}, called optimal set

- when Xopt ̸= ∅, we say optimal value is attained or achieved and optimization

problem is solvable

• optimization problem is not solvable if p∗ = ∞ or p∗ = −∞ (converse is not true)

Definition 177. [local optimality] for optimization problem in Definition 175 whereX is

metric space, x ∈ F satisfying inf{f(z)|z ∈ F, ρ(z, x) ≤ r} where ρ : X×X → R+

is metric, for some r > 0, said to be locally optimal, i.e., x solves

minimize f(z)

subject to q(z) ⪯ 0

h(z) = 0

ρ(z, x) ≤ r
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Equivalent optimization problems

Definition 178. [equivalent optimization problems] two optimization problems where

solving one readily solve the other, said to be equivalent

• below two optimization problems are equivalent

–
minimize −x− y

subject to 2x+ y ≤ 1

x+ 2y ≤ 1

–
minimize −2u− v/3

subject to 4u+ v/3 ≤ 1

2u+ 2v/3 ≤ 1

since if (x∗, y∗) solves first, (u, v) = (x∗/2, 3y∗) solves second, and if (u∗, v∗)

solves second, (x, y) = (2u∗, v∗/3) solves first
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Change of variables

• given function ϕ : Z → X, optimization problem in Definition 175 can be rewritten as

minimize f(ϕ(z))

subject to q(ϕ(z)) ⪯ 0

h(ϕ(z)) = 0

where z ∈ Z is optimization variable

• if ϕ is injective and D ⊂ ϕ(Z), above optimization problem and optimization problem

in Definition 175 are equivalent, i.e.

– Xopt is optimal set of problem in Definition 175 ⇒ ϕ−1(Xopt) is optimal set of

above problem

– Zopt is optimal set of above problem ⇒ ϕ(Zopt) is optimal set of problem in

Definition 175

• two optimization problems said to be related by change of variable or substitution of

variable x = ϕ(z)
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Convex optimization

Definition 179. [convex optimization] optimization problem in Definition 175 where

X is Banach space, i.e., complete linear normed vector space, f & q are convex functions,

and h is affine function, called convex optimization problem

- when X = Rn, optimization problem can be formulated as

minimize f(x)

subject to q(x) ⪯ 0

Ax = b

for some A ∈ Rp×n and b ∈ Rp

• domain of convex optimization problem is convex

– since domains of f , q, and h are convex (by definition of convex functions) and

intersection of convex sets is convex

• feasible set of convex optimization problem is convex

– since sublevel sets of convex functions are convex, feasible sets for affine function is

either empty set, singleton, or affine sets, all of which are convex sets
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Optimality conditions for convex optimization problems

Theorem 82. [local optimality implies global optimality] for convex optimization

problem (in Definition 179), every local optimal point is global optimal point

Theorem 83. [optimality conditions for convex optimality problems] for convex optimization

problem (in Definition 179), when f is differentiable (i.e., dom f is open and ∇f exists

everywhere in dom f)

- x ∈ D is optimal if and only if x ∈ F and

(∀y ∈ F)
(
∇f(x)T (y − x) ≥ 0

)
- for unconstrained problems, x ∈ D is optimal if and only if

∇f(x) = 0
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Optimality conditions for some convex optimization problems

• unconstrained convex quadratic optimization

minimize f(x) = (1/2)xTPx+ qTx

where F = Rn and P ∈ Sn+
– x is optimal if and only if

∇f(x) = Px+ q = 0

exist three cases

- if P ∈ Sn++, exists unique optimum x∗ = −P−1q

- if q ∈ R(P ), Xopt = −P †q + N (P )

- if q ̸∈ R(P ), p∗ = −∞
• analytic centering

minimize f(x) = −
∑m

i=1 log(bi − aTi x)
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where F = {x ∈ Rn|Ax ≺ b}
– x is optimal if and only if

∇f(x) =

m∑
i=1

1

bi − aTi x
ai = 0

exist three cases

- exists unique optimum, which happens if and only if {x|bi − aTi x} is nonempty

and bounded

- exist infinitely many optima, in which case, Xopt is affine set

- exists no optimum, which happens if and only if f is unbounded below

• convex optimization problem with equality constraints only

minimize f(x)

subject to Ax = b

where X = Rn

– x is optimal if and only if

∇f(x) ⊥ N (A)
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or equivalently, exists ν ∈ Rp such that

∇f(x) = A
T
ν
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Linear programming

Definition 180. [linear programming] convex optimization problem in Definition 179

with X = Rn and linear f & q, called linear program (LP), which can be formulated as

minimize cTx

subject to Cx ⪯ d

Ax = b

where c ∈ Rn, C ∈ Rm×n, d ∈ Rm, A ∈ Rp×n, b ∈ Rp

- can transform above LP into standard form LP

minimize c̃T x̃

subject to Ãx̃ = b̃

x̃ ⪰ 0
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LP examples

• diet problem - find amount of n different food to minimize purchase cost while satisfying

nutrition requirements

– assume exist n food andm nutritions, ci is cost of food i, Aji is amount of nutrition

j contained in unit quantity of food i, bj is amount requirement for nutrition j

– diet problem can be formulated as LP

minimize cTx

subject to Ax ⪰ b

x ⪰ 0

• Chebyshev center of polyhedron - find largest Euclidean ball contained in polyhedron

– assume polyhedron is {x ∈ Rn|aTi x ≤ bi, i = 1, . . . ,m}
– problem of finding Chebyshev center of polyhedron can be formulated as LP

maximize r

subject to aTi x+ r∥ai∥2 ≤ bi
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where optimization variables are x ∈ Rn and r ∈ R

• piecewise-linear minimization - minimize maximum of affine functions

– assume m affine functions aTi x+ bi
– piecewise-linear minimization problem can be formulated as LP

minimize t

subject to aTi x+ bi ≤ t, i = 1, . . . ,m

• linear-fractional program

minimize (cTx+ d)/(eTx+ f)

subject to Gx ⪯ h

Ax = b

Searching for Universal Truths - Convex Optimization - Convex Optimization Problems 526



Sunghee Yun August 4, 2025

– if feasible set is nonempty, can be formulated as LP

minimize cTy + dz

subject to Gy − hz ⪯ 0

Ay − bz = 0

eTy + fz = 1

z ≥ 0

Searching for Universal Truths - Convex Optimization - Convex Optimization Problems 527



Sunghee Yun August 4, 2025

Quadratic programming

Definition 181. [quadratic programming] convex optimization problem in Definition 179

with X = Rn and convex quadratic f and linear q, called quadratic program (QP), which

can be formulated as
minimize (1/2)xTPx+ qTx

subject to Gx ⪯ h

Ax = b

where P ∈ Sn+, q ∈ Rn, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, b ∈ Rp

• when P = 0, QP reduces to LP, hence LP is specialization of QP
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QP examples

• least-squares (LS) problems

– LS can be formulated as QP

minimize ∥Ax− b∥2
2

• distance between two polyhedra

– assume two polyhedra {x ∈ Rn|Ax ⪯ b, Cx = d} and {x ∈ Rn|Ãx ⪯ b̃, C̃x =

d̃}
– problem of finding distance between two polyhedra can be formulated as QP

minimize ∥x− y∥2
2

subject to Ax ⪯ b, Cx = d

Ãy ⪯ b̃, C̃y = d̃
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Quadratically constrained quadratic programming

Definition 182. [quadratically constrained quadratic programming] convex optimization

problem in Definition 179 with X = Rn and convex quadratic f & q, called quadratically

constrained quadratic program (QCQP), which can be formulated as

minimize (1/2)xTP0x+ qT0 x

subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

Ax = b

where Pi ∈ Sn+, qi ∈ Rn, ri ∈ R, A ∈ Rp×n, b ∈ Rp

• when Pi = 0 for i = 1, . . . ,m, QCQP reduces to QP, hence QP is specialization of

QCQP
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Second-order cone programming

Definition 183. [second-order cone programming] convex optimization problem in

Definition 179 with X = Rn and linear f and convex q of form

minimize fTx

subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

where f ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni, ci ∈ Rn, di ∈ R, F ∈ Rp×n, g ∈ Rp called

second-order cone program (SOCP)

• when bi = 0, SOCP reduces to QCQP, hence QCQP is specialization of SOCP
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SOCP examples

• robust linear program - minimize cTx while satisfying ãTi x ≤ bi for every ãi ∈
{ai + Piu|∥u∥2 ≤ 1} where Pi ∈ Sn

– can be formulated as SOCP

minimize cTx

subject to aTi x+ ∥P T
i x∥2 ≤ bi

• linear program with random constraints - minimize cTx while satisfying ãTi x ≤ bi with

probability no less than η where ã ∼ N (ai,Σi)

– can be formulated as SOCP

minimize cTx

subject to aTi x+ Φ−1(η)∥Σ1/2
i x∥2 ≤ bi
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Geometric programming

Definition 184. [monomial functions] function f : Rn++ → R defined by

f(x) = cx
a1
1 · · · xann

where c > 0 and ai ∈ R, called monomial function or simply monomial

Definition 185. [posynomial functions] function f : Rn++ → R which is finite sum of

monomial functions, called posynomial function or simply posynomial

Definition 186. [geometric programming] optimization problem

minimize f(x)

subject to q(x) ⪯ 1

h(x) = 1

for posynomials f : Rn++ → R & q : Rn++ → Rm and monomials h : Rn++ → Rp, called
geometric program (GP)
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Geometric programming in convex form

• geometric program in Definition 186 is not convex optimization problem (as it is)

• however, can be transformed to equivalent convex optimization problem by change of

variables and transformation of functions

Proposition 42. [geometric programming in convex form] geometric program (in

Definition 186) can be transformed to equivalent convex optimization problem

minimize log
(∑K0

k=1 exp((a
(0)
k )Ty + b

(0)
k )
)

subject to log
(∑Ki

k=1 exp((a
(i)
k )Ty + b

(i)
k )
)

≤ 0 i = 1, . . . ,m

Gy = h

for some a
(i)
k ∈ Rn, b

(i)
k ∈ R, G ∈ Rp×n, h ∈ Rp where optimization variable is

y = log(x) ∈ Rn
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Convex optimization with generalized inequalities

Definition 187. [convex optimization with generalized inequality constraints] convex

optimization problem in Definition 179 with inequality constraints replaced by generalized

inequality constraints, i.e.

minimize f(x)

subject to qi(x) ⪯Ki
0 i = 1, . . . , q

h(x) = 0

where Ki ⊂ Rki are proper cones and qi : Qi → Rki are Ki-convex, called convex

optimization problem with generalized inequality constraints
• problem in Definition 187 reduces to convex optimization problem in Definition 179

when q = 1 and K1 = Rm+ , hence convex optimization is specialization of convex

optimization with generalized inequalities

• like convex optimization

– feasible set is F = {x ∈ D|qi(x) ⪯Ki
0, Ax = b} is convex

– local optimality implies global optimality

– optimality conditions in Theorem 83 applies without modification
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Conic programming

Definition 188. [conic programming] convex optimization problem with generalized

inequality constraints in Definition 187 with linear f and one affine q

minimize f(x)

subject to q(x) ⪯K 0

h(x) = 0

called conic program (CP)

- can transform above CP to standard form CP

minimize f̃(X)

subject to h̃(X) = 0

X ⪰K 0

• cone program is one of simplest convex optimization problems with generalized

inequalities
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Semidefinite programming

Definition 189. [semidefinite programming] conic program in Definition 188 with

X = Rn and K = Sn+

minimize cTx

subject to x1F1 + · · · + xnFn +G ⪯ 0

Ax = b

where F1, . . . , Fn, G ∈ Sk and A ∈ Rp×n, called semidefinite program (SDP)

- above inequality, called linear matrix inequality (LMI)

- can transform SDP to standard form SDP

minimize Tr(CX)

subject to Tr(AiX) = bi i = 1, . . . , p

X ⪰ 0

where X = Sn+ and C,A1, . . . , Ap ∈ Sn and bi ∈ R

Searching for Universal Truths - Convex Optimization - Convex Optimization Problems 537



Sunghee Yun August 4, 2025

SDP examples

• LP

– if k = m, Fi = diag(C1,i, . . . , Cm,i), G = − diag(d1, . . . , dm) in

Definition 189, SDP reduces to LP in Definition 180

– hence, LP is specialization of SDP

• SOCP

– SOCP in Definition 183 is equivalent to

minimize fTx

subject to Fx = g[
cTi x+ di xTAT

i + bTi
Aix+ bi (cTi x+ di)Ini

]
⪰ 0 i = 1, . . . ,m

which can be transformed to SDP in Definition 189, thus, SDP reduces to SOCP

– hence, SOCP is specialization of SDP
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Determinant maximization problems

Definition 190. [determinant maximization problems] convex optimization problem

with generalized inequality constraints in Definition 187 with X = Rn of form

minimize − log det(x1C1 + · · · + xnCn +D) + cTx

subject to x1F1 + · · · + xnFn +G ⪯ 0

−x1C1 − · · · − xnCn −D ≺ 0

Ax = b

where c ∈ Rn, C1, . . . , Cn, D ∈ Sl, F1, . . . , Fn, G ∈ Sk, and A ∈ Rp×n, called

determinant maximization problem or simply max-det problem (since it maximizes

determinant of (positive definite) matrix with constraints)

• if l = 1, C1 = · · · = Cn = 0, D = 1, max-det problem reduces to SDP, hence SDP

is specialization of max-det problem
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Diagrams for containment of convex optimization problems

• the figure shows containment relations among convex optimization problems

• vertical lines ending with filled circles indicate existence of direct reductions, i.e.,

optimization problem transformations to special cases

LP

QP

QCQP

SOCP

SDP

max-det
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Lagrangian

Definition 191. [Lagrangian] for optimization problem in Definition 175 with nonempty

domain D, function L : D × Rm × Rp → R defined by

L(x, λ, ν) = f(x) + λ
T
q(x) + ν

T
h(x)

called Lagrangian associated with the optimization problem where

- λ, called Lagrange multiplier associated inequality constraints q(x) ⪯ 0

- λi, called Lagrange multiplier associated i-th inequality constraint qi(x) ≤ 0

- ν, called Lagrange multiplier associated equality constraints h(x) = 0

- νi, called Lagrange multiplier associated i-th equality constraint hi(x) = 0

- λ and ν, called dual variables or Lagrange multiplier vectors associated with the

optimization problem
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Lagrange dual functions

Definition 192. [Lagrange dual functions] for optimization problem in Definition 175

for which Lagrangian is defined, function g : Rm × Rp → R ∪ {−∞} defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f(x) + λ

T
q(x) + ν

T
h(x)

)
called Lagrange dual function or just dual function associated with the optimization

problem

• g is (always) concave function (even when optimization problem is not convex)

- since is pointwise infimum of linear (hence concave) functions is concave

• g(λ, ν) provides lower bound for optimal value of associated optimization problem,

i.e.,

g(λ, ν) ≤ p
∗

for every λ ⪰ 0 (proof can be found in Proof 24)

• (λ, ν) ∈ {(λ, ν)|λ ⪰ 0, g(λ, ν) > −∞}, said to be dual feasible
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Dual function examples

• LS solution of linear equations

minimize xTx

subject to Ax = b

– Lagrangian - L(x, ν) = xTx+ νT (Ax− b)

– Lagrange dual function

g(ν) = −
1

4
ν
T
AA

T
ν − b

T
ν

• standard form LP
minimize cTx

subject to Ax = b

x ⪰ 0

– Lagrangian - L(x, λ, ν) = cTx− λTx+ νT (Ax− b)
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– Lagrange dual function

g(λ, ν) =

{
−bTν ATν − λ+ c = 0

−∞ otherwise

- hence, set of dual feasible points is {(ATν + c, ν)|ATν + c ⪰ 0}
• maximum cut, sometimes called max-cut, problem, which is NP-hard

minimize xTWx

subject to x2
i = 1

where W ∈ Sn

– Lagrangian - L(x, ν) = xT (W + diag(ν))x− 1Tx

– Lagrange dual function

g(ν) =

{
−1Tν W + diag(ν) ⪰ 0

−∞ otherwise

- hence, set of dual feasible points is {ν|W + diag(ν) ⪰ 0}
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• some trivial problem
minimize f(x)

subject to x = 0

– Lagrangian - L(x, ν) = f(x) + νTx

– Lagrange dual function

g(ν) = inf
x∈Rn

(f(x) + ν
T
x) = − sup

x∈Rn
((−ν)Tx− f(x)) = −f∗

(−ν)

- hence, set of dual feasible points is − dom f∗, and for every f : Rn → R and

ν ∈ Rn

−f∗
(−ν) ≤ f(0)

• minimization with linear inequality and equality constraints

minimize f(x)

subject to Ax ⪯ b

Cx = d

– Lagrangian - L(x, λ, ν) = f(x) + λT (Ax− b) + νT (Cx− d)
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– Lagrange dual function

g(ν) = −bTλ− d
T
ν − f

∗
(−AT

λ− C
T
ν)

- hence, set of dual feasible points is {(λ, ν)| −ATλ−CTν ∈ dom f∗, λ ⪰ 0}
• equality constrained norm minimization

minimize ∥x∥
subject to Ax = b

– Lagrangian - L(x, ν) = ∥x∥ + νT (Ax− b)

– Lagrange dual function

g(ν) = −bTν − sup
x∈Rn

((−AT
ν)

T
x− ∥x∥) =

{
−bTν ∥ATν∥∗ ≤ 1

−∞ otherwise

- hence, set of dual feasible points is {ν|∥ATν∥∗ ≤ 1}
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• entropy maximization
minimize

∑n
i=1 xi log xi

subject to Ax ⪯ b

1Tx = 1

where domain of objective function is Rn++

– Lagrangian - L(x, λ, ν) =
∑n

i=1 xi log xi + λT (Ax− b) + ν(1Tx− 1)

– Lagrange dual function

g(λ, ν) = −bTλ− ν − exp(−ν − 1)

n∑
i=1

exp(a
T
i λ)

obtained using f∗(y) =
∑n

i=1 exp(yi − 1) where ai is i-th column vector of A

• minimum volume covering ellipsoid

minimize − log detX

subject to aTi Xai ≤ 1 i = 1, . . . ,m

where domain of objective function is Sn++

– Lagrangian - L(X,λ) = − log detX +
∑m

i=1 λi(a
T
i Xai − 1)
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– Lagrange dual function

g(λ) =

{
log det(

∑m
i=1 λiaia

T
i ) − 1Tλ+ n

∑m
i=1 λiaia

T
i ≻ 0

−∞ otherwise

obtained using f∗(Y ) = − log det(−Y ) − n

Searching for Universal Truths - Convex Optimization - Duality 549



Sunghee Yun August 4, 2025

Best lower bound

• for every (λ, ν) with λ ⪰ 0, Lagrange dual function g(λ, ν) (in Definition 192)

provides lower bound for optimal value p∗ for optimization problem in Definition 175

• natural question to ask is

– how good is the lower bound?

– what is best lower bound we can achieve?

• these questions lead to definition of Lagrange dual problem
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Lagrange dual problems

Definition 193. [Lagrange dual problems] for optimization problem in Definition 175,

optimization problem
maximize g(λ, ν)

subject to λ ⪰ 0

called Lagrange dual problem associated with problem in Definition 175

- original problem in Definition 175, (somestime) called primal problem

- domain is Rm × Rp

- dual feasibility defined in page 543, i.e., (λ, ν) satisfying λ ⪰ 0 g(λ, ν) > −∞
indeed means feasibility for Lagrange dual problem

- d∗ = sup{g(λ, ν)|λ ∈ Rm, ν ∈ Rp, λ ⪰ 0}, called dual optimal value

- (λ∗, ν∗) = argsup{g(λ, ν)|λ ∈ Rm, ν ∈ Rp, λ ⪰ 0}, said to be dual optimal

or called optimal Lagrange multipliers (if exists)

• Lagrange dual problem in Definition 193 is convex optimization (even though original

problem is not) since g(λ, ν) is always convex
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Making dual constraints explicit dual problems

• (out specific) way we define Lagrange dual function in Definition 192 as function g of

Rm × Rp into R ∪ {−∞}, i.e., dom g = Rn × Rp

• however, in many cases, feasible set {(λ, ν)|λ ⪰ 0 g(λ, ν) > −∞} is proper

subset of Rn × Rp

• can make this implicit feasibility condition explicit by adding it as constraint (as shown

in following examples)
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Lagrange dual problems associated with LPs

• standard form LP

– primal problem
minimize cTx

subject to Ax = b

x ⪰ 0

– Lagrange dual problem

maximize g(λ, ν) =

{
−bTν ATν − λ+ c = 0

−∞ otherwise

subject to λ ⪰ 0

(refer to page 545 for Lagrange dual function)

- can make dual feasibility explicit by adding it to constraints as mentioned on

page 552
maximize −bTν
subject to λ ⪰ 0

ATν − λ+ c = 0
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- can further simplify problem

maximize −bTν
subject to ATν + c ⪰ 0

– last problem is inequality form LP

– all three problems are equivalent, but not same problems

– will, however, with abuse of terminology, refer to all three problems as Lagrange dual

problem

• inequality form LP

– primal problem
minimize cTx

subject to Ax ⪯ b

– Lagrangian

L(x, λ) = c
T
x+ λ

T
(Ax− b)

– Lagrange dual function

g(λ) = −bTλ+ inf
x∈Rn

(c+ A
T
λ)

T
x =

{
−bTλ ATλ+ c = 0

−∞ otherwise
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– Lagrange dual problem

maximize g(λ) =

{
−bTλ ATλ+ c = 0

−∞ otherwise

subject to λ ⪰ 0

- can make dual feasibility explicit by adding it to constraints as mentioned on

page 552
maximize −bTν
subject to ATλ+ c = 0

λ ⪰ 0

– dual problem is standard form LP

• thus, dual of standard form LP is inequality form LP and vice versa

• also, for both cases, dual of dual is same as primal problem
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Lagrange dual problem of equality constrained optimization problem

• equality constrained optimization problem

minimize f(x)

subject to Ax = b

• dual function

g(ν) = inf
x∈dom f

(f(x) + ν
T
(Ax− b)) = − b

T
ν − sup

x∈dom f
(−νTAx− f(x))

= −bTν − f
∗
(−AT

ν)

• dual problem

maximize −bTν − f∗(−ATν)
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Lagrange dual problem associated with equality constrained
quadratic program

• strictly convex quadratic problem

minimize f(x) = xTPx+ qTx+ r

subject to Ax = b

– conjugate function of objective function

f
∗
(x) = (x−q)TP−1

(x−q)/4−r = x
T
P

−1
x/4−qTP−1

x/2+q
T
P

−1
q/4−r

– dual problem

maximize −νT (AP−1AT )ν/4 − (b+ AP−1q/2)Tν − qTP−1q/4 + r
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Lagrange dual problems associated with nonconvex quadratic
problems

• primal problem
minimize xTAx+ 2bTx

subject to xTx ≤ 1

where A ∈ Sn, A ̸∈ Sn+, and b ∈ Rn

– since A ̸⪰ 0, not convex optimization problem

– sometimes called trust region problem arising minimizing second-order approximation

of function over bounded region

• Lagrange dual function

g(λ) =

{
−bT (A+ λI)†b− λ A+ λI ⪰ 0, b ∈ R(A+ λI)

−∞ otherwise

where (A+ λI)† is pseudo-inverse of A+ λI
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• Lagrange dual problem

maximize −bT (A+ λI)†b− λ

subject to A+ λI ⪰ 0, b ∈ R(A+ λI)

where optimization variable is λ ∈ R

– note we do not need constraint λ ≥ 0 since it is implied by A+ λI ⪰ 0

– though not obvious from what it appears to be, it is (of course) convex optimization

problem (by definition of Lagrange dual function, i.e., Definition 192)

– can be expressed ar

maximize −
∑n

i=1(q
T
i b)

2/(λi + λ) − λ

subject to λ ≥ −λmin(A)

where λi and qi are eigenvalues and corresponding orthogormal eigenvectors of A,

when λi + λ = 0 for some i, we interpret (qTi b)
2/0 as 0 if qTi 0 and ∞ otherwise
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Weak duality

• since g(λ, ν) ≤ p∗ for every λ ⪰ 0, we have

d
∗
= sup{g(λ, ν)|λ ∈ Rm, ν ∈ Rp, λ ⪰ 0} ≤ p

∗

Definition 194. [weak duality] property that that optimal value of optimization problem

(in Definition 175) is always no less than optimal value of Lagrange daul problem (in

Definition 193)

d
∗ ≤ p

∗

called weak duality

- d∗ is best lower bound for primal problem that can be obtained from Lagrange dual

function (by definition)

- weak duality holds even when d∗ or/and p∗ are not finite, e.g.

– if primal problem is unbounded below so that p∗ = −∞, must have d∗ = −∞,

i.e., dual problem is infeasible

– conversely, if dual problem is unbounded above so that d∗ = ∞, must have

p∗ = ∞, i.e., primal problem is infeasible
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Optimal duality gap

Definition 195. [optimal duality gap] difference between optimal value of optimization

problem (in Definition 175) and optimal value of Lagrange daul problem (in Definition 193),

i.e.

p
∗ − d

∗

called optimal duality gap

• sometimes used for lower bound of optimal value of problem which is difficult to solve

– for example, dual problem of max-cut problem (on page 545), which is NP-hard, is

minimize −1Tν

subject to W + diag(ν) ⪰ 0

where optimization variable is ν ∈ Rn

- the dual problem can be solved very efficiently using polynomial time algorithms

while primal problme cannot be solved unless n is very small
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Strong duality

Definition 196. [strong duality] if optimal value of optimization problem (in

Definition 175) equals to optimal value of Lagrange daul problem (in Definition 193),

i.e.

p
∗
= d

∗

strong duality said to hold

• strong duality does not hold in general

– if it held always, max-cut problem, which is NP-hard, can be solved in polynomial

time, which would be one of biggest breakthrough in field of theoretical computer

science

– may mean some of strongest cryptography methods, e.g., homeomorphic

cryptography, can be broken
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Slater’s theorem

• exist many conditions which guarantee strong duality, which are called constraint

qualifications - one of them is Slater’s condition

Theorem 84. [Slater’s theorem] if optimization problem is convex (Definition 179),

and exists feasible x ∈ D contained in relintD such that

q(x) ≺ 0 h(x) = 0

strong duality holds (and dual optimum is attained when d∗ > −∞)

- such condition, called Slater’s condition

- such point, (sometimes) said to be strictly feasible

when there are affine inequality constraints, can refine Slater’s condition - if first k

inequality constraint functions q1, . . . , qk are affine, Slater’s condition can be relaxed to

qi(x) ≤ 0 i = 1, . . . , k qi(x) < 0 i = k + 1, . . . ,m h(x) = 0
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Strong duality for LS solution of linear equations

• primal problem
minimize xTx

subject to Ax = b

• dual problem

maximize g(ν) = −1
4ν

TAATν − bTν

(refer to page 544 for Lagrange dual function)

• “dual is always feasible” and “primal is feasible ⇒ Slater’s condition holds”, thus

Slater’s theorem (Theorem 84) implies, exist only three cases

– (d∗ = p∗ ∈ R) or (d∗ ∈ R & p∗ = ∞) or (d∗ = p∗ = ∞)

• if primal is infeasible, though, b ̸∈ R(A), thus exists z, such that ATz = 0 and

bTz ̸= 0, then line {tz|t ∈ R} makes dual problem unbounded above, hence d∗ = ∞

• hence, strong duality always holds, i.e., (d∗ = p∗ ∈ R) or (d∗ = p∗ = ∞)
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Strong duality for LP

• every LP either is infeasible or satisfies Slater’s condition

• dual of LP is LP, hence, Slater’s theorem (Theorem 84) implies

– if primal is feaisble, either (d∗ = p∗ = −∞) or (d∗ = p∗ ∈ R)

– if dual is feaisble, either (d∗ = p∗ = ∞) or (d∗ = p∗ ∈ R)

– only other case left is (d∗ = −∞ & p∗ = ∞)

- indeed, this pathological case can happen
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Strong duality for entropy maximization

• primal problem
minimize

∑n
i=1 xi log xi

subject to Ax ⪯ b

1Tx = 1

• dual problem (refer to page 548 for Lagrange dual function)

maximize −bTλ− ν − exp(−ν − 1)
∑n

i=1 exp(a
T
i λ)

subject to λ ⪰ 0

• dual problem is feasible, hence, Slater’s theorem (Theorem 84) implies, if exists x ≻ 0

with Ax ⪯ b and 1Tx = 1, strong duality holds, and indeed d∗ = p∗ ∈ R

• by the way, can simplify dual problem by maximizing dual objective function over ν

maximize −bTλ− log
(∑n

i=1 exp(a
T
i λ)
)

subject to λ ⪰ 0

which is geometry program in convex form (Proposition 42) with nonnegativity contraint
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Strong duality for minimum volume covering ellipsoid

• primal problem
minimize − log detX

subject to aTi Xai ≤ 1 i = 1, . . . ,m

where D = Sn++

• dual problem

maximize

{
log det(

∑m
i=1 λiaia

T
i ) − 1Tλ+ n

∑m
i=1 λiaia

T
i ≻ 0

−∞ otherwise

subject to λ ⪰ 0

(refer to page 549 for Lagrange dual function)

• X = αI with large enough α > 0 satisfies primal’s constraints, hence Slater’s

condition always holds, thus, strong duality always holds, i.e., (d∗ = p∗ ∈ R) or

(d∗ = p∗ = −∞)

• in fact, R(a1, . . . , am) = Rn if and only if d∗ = p∗ ∈ Rn
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Strong duality for trust region nonconvex quadratic problems

• one of rare occasions in which strong duality obtains for nonconvex problems

• primal problem
minimize xTAx+ 2bTx

subject to xTx ≤ 1

where A ∈ Sn, A ̸∈ Sn+, and b ∈ Rn

• Lagrange dual problem (page 559)

maximize −bT (A+ λI)†b− λ

subject to A+ λI ⪰ 0, b ∈ R(A+ λI)

• strong duality always holds and d∗ = p∗ ∈ R (since dual problem is feasible - large

enough λ satisfies dual constraints)

• in fact, exists stronger result - strong dual holds for optimization problem with quadratic

objective and one quadratic inequality constraint, provided Slater’s condition holds
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Matrix games using mixed strategies

• matrix game - consider game with two players A and B

– player A makes choice 1 ≤ a ≤ n, player B makes choice 1 ≤ b ≤ m, then player

A makes payment of Pab to player B

– matrix P ∈ Rn×m, called payoff matrix

– player A tries to pay as little as possible & player B tries to received as much as

possible

– players use randomized or mixed strategies, i.e., each player makes choice randomly

and independently of other player’s choice according to probability distributions

Prob(a = i) = ui i = 1 ≤ i ≤ n Prob(b = j) = vj i = 1 ≤ j ≤ m

• expected payoff (from player A to player B)∑
i

∑
j

uivjPij = u
T
Pv
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• assume player A’s strategy is known to play B

– player B will choose v to maximize uTPv

sup{uTPv|v ⪰ 0, 1
T
v = 1} = max

1≤j≤m
(P

T
u)j

– player A (assuming that player B will employ above strategy to maximize payment)

will choose u to minimize payment

minimize max1≤j≤m(P
Tu)j

subject to u ⪰ 0 1Tu = 1

• assume player B’s strategy is known to play A

– then player B will do same to maximize payment (assuming that player A will

employ such strategy to minimize payment)

maximize min1≤i≤n(Pv)i
subject to v ⪰ 0 1Tv = 1
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Strong duality for matrix games using mixed strategies

• in matrix game, can guess in frist came, player B has advantage over player A because

A’s strategy’s exposed to B, and vice versa, hence optimal value of first problem is

greater than that of second problem

• surprising, no one has advantage over the other, i.e., optimal values of two problems

are same - will show this

• first observe both problems are (convex) piecewise-linear optimization problems

• formulate first problem as LP

minimize t

subject to u ⪰ 0 1Tu = 1 P Tu ⪯ t1

– Lagrangian

L(u, t, λ1, λ2, ν) = ν + (1 − 1
T
λ1)t+ (Pλ1 − ν1 − λ2)

T
u
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– Lagrange dual function

g(λ1, λ2, ν) =

{
ν 1Tλ1 = 1 & Pλ1 − ν1 = λ2

−∞ otherwise

• Lagrange dual problem

maximize ν

subject to 1Tλ1 = 1 Pλ1 − ν1 = λ2

λ1 ⪰ 0 λ2 ⪰ 0

• eliminating λ2 gives below Lagrange dual problem

maximize ν

subject to λ1 ⪰ 0 1Tλ1 = 1 Pλ1 ⪰ ν1

which is equivalent to second problem in matrix game

• weak duality confirms “player who knows other player’s strategy has advantage or on

par”
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• moreoever, primal problem satisfies Slater’s condition, hence strong duality always holds,

and dual is feasible, hence d∗ = p∗ ∈ R, i.e., regardless of who knows other player’s

strategy, no player has advantage
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Geometric interpretation of duality

• assume (not necessarily convex) optimization problem in Definition 175

• define graph

G = {(q(x), h(x), f(x))|x ∈ D} ⊂ Rm × Rp × R

• for every λ ⪰ 0 and ν

p
∗
= inf{t|(u, v, t) ∈ G, u ⪯ 0, v = 0}

≥ inf{t+ λ
T
u+ ν

T
v|(u, v, t) ∈ G, u ⪯ 0, v = 0}

≥ inf{t+ λ
T
u+ ν

T
v|(u, v, t) ∈ G} = g(λ, ν)

where second inequality comes from {(u, v, t)|(u, v, t) ∈ G, u ⪯ 0, v = 0} ⊂ G

• above establishes weak duality using graph

• last equality implies that

(λ, ν, 1)
T
(u, v, t) ≥ g(λ, ν)
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hence if g(λ, ν) > −∞, (λ, ν, 1) and g(λ, ν) define nonvertical supporting

hyperplane for G - nonvertical because third component is nonzero

• the figure shows G as area inside closed curve contained in Rm×Rp×R wherem = 1

and p = 0 as primal optimal value p∗ and supporting hyperplane λu+ t = g(λ)

p∗t
hhhhhhhhhhhhhhhhhhhhhhhhhhhh

λu+ t = g(λ)

u

t

G
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• the figure shows three hyperplanes determined by three values for λ, one of which λ∗ is

optimal solution for dual problem

p∗t
hhhhhhhhhhhhhhhhhhhhhhhhhhhh

λ1u+ t = g(λ1)

u

t

G

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

HHH
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HHHH

λ2u+ t = g(λ2)

λ∗u+ t = g(λ∗)

tg(λ∗) = d∗ tg(λ1)tg(λ2)
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Epigraph interpretation of duality

• define extended graph over G - sort of epigraph of G

H = G+ Rm+ × {0} × R+

= {(u, v, t)|x ∈ D, q(x) ⪯ u, h(x) = v, f(x) ≤ t}

• if λ ⪰ 0, g(λ, ν) = inf{(λ, ν, 1)T (u, v, t)|(u, v, t) ∈ H}, thus

(λ, ν, 1)
T
(u, v, t) ≥ g(λ, ν)

defines nonvertical supporting hyperplane for H

• now p∗ = inf{t|(0, 0, t) ∈ H}, hence (0, 0, p∗) ∈ bdH, hence

p
∗
= (λ, ν, 1)

T
(0, 0, p

∗
) ≥ g(λ, ν)

• once again establishes weak duality

• the figure shows epigraph interpretation
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p∗t
hhhhhhhhhhhhhhhhhhhhhhhhhhhh

λu+ t = g(λ)

u

t

G

H
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Proof of strong duality under constraint qualification

• now we show proof of strong duality - this is one of rare cases where proof is shown

in main slides instead of “selected proofs” section like Galois theory since - (I hope)

it will give you some good intuition about why strong duality holds for (most) convex

optimization problems

• assume Slater’s condition holds, i.e., f and q are convex, h is affine, and exists x ∈ D
such that q(x) ≺ 0 and h(x) = 0

• further assume D has interior (hence, relintD = D◦ and rankA = p

• assume p∗ ∈ R - since exists feasible x, the other possibility is p∗ = −∞, but then,

d∗ = −∞, hence strong duality holds

• H is convex (proof can be found in Proof 26)

• now define

B = {(0, 0, s) ∈ Rm × Rp × R|s < p
∗}

• then B ∩ H = ∅, hence Theorem 77 implies exists separable hyperplane with
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(λ̃, ν̃, µ) ̸= 0 and α such that

(u, v, t) ∈ H ⇒ λ̃
T
u+ ν̃

T
v + µt ≥ α

(u, v, t) ∈ B ⇒ λ̃
T
u+ ν̃

T
v + µt ≤ α

• then λ̃ ⪰ 0 & µ ≥ 0 - assume µ > 0

– can prove when µ = 0, but kind of tedius, plus, whole purpose is provide good

intuition, so will not do it here

• above second inequality implies µp∗ ≤ α and for some x ∈ D

µL(x, λ̃/µ, ν̃/µ) = λ̃
T
q(x) + ν̃

T
h(x) + µf(x) ≥ α ≥ µp

∗

thus,

g(λ̃/µ, ν̃/µ) ≥ p
∗

• finally, weak duality implies

g(λ, ν) = p
∗

where λ = λ̃/µ & ν = ν̃/µ
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Max-min characterization of weak and strong dualities

• note

sup
λ≥0,ν

L(x, λ, ν) = sup
λ≥0,ν

(
f(x) + λ

T
q(x) + ν

T
h(x)

)
=

{
f(x) x ∈ F
∞ otherwise

• thus p∗ = infx∈D supλ⪰0,ν L(x, λ, ν) whereas d∗ = supλ⪰0,ν infx∈D L(x, λ, ν)

• weak duality means

sup
λ⪰0,ν

inf
x∈D

L(x, λ, ν) ≤ inf
x∈D

sup
λ⪰0,ν

L(x, λ, ν)

• strong duality means

sup
λ⪰0,ν

inf
x∈D

L(x, λ, ν) = inf
x∈D

sup
λ⪰0,ν

L(x, λ, ν)
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Max-min inequality

• indeed, inequality supλ⪰0 infx∈D L(x, λ, ν) ≤ infx∈D supλ⪰0L(x, λ, ν) holds for

general case

Inequality 16. [max-min inequality] for f : X × Y → R

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y)

(proof can be found in Proof 25)

Definition 197. [strong max-min property] if below equality holds, we say f (and X

and Y ) satisfies strong max-min property or saddle point property

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

sup
y∈Y

f(x, y)

• this happens, e.g., X = D, Y = Rm+ × Rp, f is Lagrangian of optimization problem

(in Definition 175) for which strong duality holds
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Saddle-points

Definition 198. [saddle-points] for f : X × Y → R, pair x∗ ∈ X and y∗ ∈ Y such

that

(∀x ∈ X, y ∈ Y )
(
f(x

∗
, y) ≤ f(x

∗
, y

∗
) ≤ f(x, y

∗
)
)

called saddle-point for f (and X and Y )

• if assumption in Definition 198 holds, x∗ minimizes f(x, y∗) over X and y∗ maximizes

f(x∗, y) over Y

sup
y∈Y

f(x
∗
, y) = f(x

∗
, y

∗
) = inf

x∈X
f(x, y

∗
)

– strong max-min property (in Definition 197) holds with f(x∗, y∗) as common value
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Saddle-point interpretation of strong duality

• for primal optimum x∗ and dual optimum (λ∗, ν∗)

g(λ
∗
, ν

∗
) ≤ L(x

∗
, λ

∗
, ν

∗
) ≤ f(x

∗
)

• if strong duality holds, for every x ∈ D, λ ⪰ 0, and ν

L(x
∗
, λ, ν) ≤ f(x

∗
) = L(x

∗
, λ

∗
, ν

∗
) = g(λ

∗
, ν

∗
) ≤ L(x, λ

∗
, ν

∗
)

– thus x∗ and (λ∗, ν∗) form saddle-point of Lagrangian

• conversely, if x̃ and (λ̃, ν̃) are saddle-point of Lagrangian, i.e., for every x ∈ D,

λ ⪰ 0, and ν

L(x̃, λ, ν) ≤ L(x̃, λ̃, ν̃) ≤ L(x, λ̃, ν̃)

– hence g(λ̃, ν̃) = infx∈D L(x, λ̃, ν̃) = L(x̃, λ̃, ν̃) = supλ⪰0,ν L(x̃, λ, ν) =

f(x̃), thus g(λ∗, ν∗) ≤ g(λ̃, ν̃) & f(x̃) ≤ f(x∗)

– thus x̃ and (λ̃, ν̃) are primal and dual optimal
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Game interpretation

• assume two players play zero-sum game with payment function f : X ×Y → R where

player A pays player B amount equal to f(x, y) when player A chooses x and player

B chooses y

• player A will try to minimize f(x, y) and player B will try to maximize f(x, y)

• assume player A chooses first then player B chooses after learning opponent’s choice

– if player A chooses x, player B will choose argsupy∈Y f(x, y)

– knowing that, player A will first choose arginfx∈X supy∈Y f(x, y)

– hence payment will be infx∈X supy∈Y f(x, y)

• if player B makes her choise first, opposite happens, i.e., payment will be

supy∈Y infx∈X f(x, y)
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• max-min inequality of Ineq 16 says

sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y)

i.e., whowever chooses later has advantage, which is similar or rather same as matrix

games using mixed strategies on page 569

• saddle-point for f (and X and Y ), (x∗, y∗), called solution of game - x∗ is optimal

choice for player A and x∗ is optimal choice for player B
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Game interpretation for weak and strong dualities

• assume payment function in zero-sum game on page 586 is Lagrangian of optimization

problem in Definition 175

• assume that X = X and Y = Rn+ × Rp

• if player A chooses first, knowing that player B will choose argsup(λ,ν)∈Y L(x, λ, ν),

she will choose x∗ = arginfx∈X sup(λ,ν)∈Y L(x, λ, ν)

• likewise, player B will choose (λ∗, ν∗) = argsup(λ,ν)∈Y infx∈X L(x, λ, ν)

• optimal dualtiy gap p∗ − d∗ equals to advantage player who goes second has

• if strong dualtiy holds, (x∗, λ∗, ν∗) is solution of game, in which case no one has

advantage
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Certificate of suboptimality

• dual feasible point (λ, ν) degree of suboptimality of current solution

• assume x is feasible solution, then

f(x) − p
∗ ≤ f(x) − g(λ, ν)

guarantees that f(x) is no further than ϵ = f(x)− g(λ, ν) from optimal point point

x∗ (even though we do not know optimal solution)

• for this reason, (λ, ν), called certificate of suboptimality

• x is ϵ-suboptimal for primal problem and (λ, ν) is ϵ-suboptimal for dual problem

• strong duality means we could find arbitrarily small certificate of suboptimality
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Complementary slackness

• assume strong duality holds for optimization problem in Definition 175 and assume x∗

is primal optimum and (λ∗, ν∗) is dual optimum, then

f(x
∗
) = L(x

∗
, λ

∗
, ν

∗
) = f(x

∗
) + λ

∗T
q(x

∗
) + ν

∗T
h(x

∗
)

• h(x∗) = 0 implies λ∗Tq(x∗) = 0

• then λ∗ ⪰ 0 and q(x∗) ⪯ 0 imply

λ
∗
iqi(x

∗
) = 0 i = 1, . . . ,m

Proposition 43. [complementary slackness] when strong duality holds, for primal and

dual optimal points x∗ and (λ∗, ν)

λ
∗
iqi(x

∗
) = 0 i = 1, . . . ,m

this property, called complementary slackness

Searching for Universal Truths - Convex Optimization - Duality 590



Sunghee Yun August 4, 2025

KKT optimality conditions

Definition 199. [KKT optimality conditions] for optimization problem in Definition 175

where f , q, and h are all differentiable, below conditions for x ∈ D and (λ, ν) ∈ Rm×Rp

q(x) ⪯ 0 - primal feasibility

h(x) = 0 - primal feasibility

λ ⪰ 0 - dual feasibility

λ
T
q(x) = 0 - complementary slackness

∇xL(x, λ, ν) = 0 - vanishing gradient of Lagrangian

called Karush-Kuhn-Tucker (KKT) optimality conditions
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KKT necessary for optimality with strong duality

Theorem 85. [KKT necessary for optimality with strong duality] for optimization

problem in Definition 175 where f , q, and h are all differentiable, if strong duality

holds, primal and dual optimal solutions x∗ and (λ∗, ν) satisfy KKT optimality conditions

(in Definition 199), i.e., for every optimization problem

- when strong duality holds, KKT optimality conditions are necessary for primal and

dual optimality

or equivalently

- primal and dual optimality with strong duality imply KKT optimality conditions
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KKT and convexity sufficient for optimality with strong duality

• assume convex optimization problem where f , q, and h are all differentiable and x ∈ D
and (λ, ν) ∈ Rm × Rp satisfying KKT conditions, i.e.

q(x) ⪯ 0, h(x) = 0, λ ⪰ 0, λ
T
q(x) = 0, ∇xL(x, λ, ν) = 0

• since L(x, λ, ν) is convex for λ ⪰ 0, i.e., each of f(x), λTq(x), and νTh(x) is

convex, vanishing gradient implies x achieves infimum for Lagrangian, hence

g(λ, ν) = L(x, λ, ν) = f(x) + λ
T
q(x) + ν

T
h(x) = f(x)

• thus, strong duality holds, i.e., x and (λ, ν) are primal and dual optimal solutions with

zero duality gap
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Theorem 86. [KKT and convexity sufficient for optimality with strong duality] for

convex optimization problem in Definition 179 where f , q, and h are all differentiable, if

x ∈ D and (λ, ν) ∈ Rm × Rp satisfy KKT optimality conditions (in Definition 199),

they are primal and dual optimal solutions having zero duality gap i.e.

- for convex optimization problem, KKT optimality conditions are sufficient for primal

and dual optimality with strong duality

or equivalently

- KKT optimality conditions and convexity imply primal and dual optimality and strong

duality

• Theorem 85 together with Theorem 86 implies that for convex optimization problem

– KKT optimality conditions are necessary and sufficient for primal and dual optimality

with strong duality
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Solving primal problems via dual problems

• when strong duality holds, can retrieve primal optimum from dual optimum since primal

optimal solution is minimize of

L(x, λ
∗
, ν

∗
)

where (λ∗, ν∗) is dual optimum

• example - entropy maximization (D = Rn++)

– primal problem - min. f(x) =
∑n

i=1 xi log xi s.t. Ax ⪯ b,
∑
x = 1

– dual problem - max. −bTλ− ν − exp(−ν − 1)
∑

exp(ATλ) s.t. λ ⪰ 0

– provided dual optimum (λ∗, ν∗), primal optimum is

x
∗
= argmin

x∈D

(∑
xi log xi + λ

∗T
(Ax− b) + ν

∗
(1
T
x− 1)

)
– ∇xL(x, λ

∗, ν∗) = log x+ ATλ∗ + (1 + ν∗)1, hence

x
∗
= exp(−(A

T
λ
∗
+ (1 + ν

∗
)1))
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Perturbed optimization problems

• original problem in Definition 175 with perturbed constraints

minimize f(x)

subject to q(x) ⪯ u

h(x) = v

where u ∈ Rm and v ∈ Rp

• define p∗(u, v) as optimal value of above perturbed problem, i.e.

p
∗
(u, v) = inf{f(x)|x ∈ D, q(x) ⪯ u, h(x) = v}

which is convex when problem is convex optimization problem (proof can be found in

Proof 26) - note p∗(0, 0) = p∗

• assume and dual optimum (λ∗, ν∗), if strong duality holds, for every feasible x for

perturbed problem

p
∗
(0, 0) = g(λ

∗
, ν

∗
) ≤ f(x) + λ

∗T
q(x) + ν

∗T
h(x) ≤ f(x) + λ

∗T
u+ ν

∗T
v
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thus

p
∗
(0, 0) ≤ p

∗
(u, v) + λ

∗T
u+ ν

∗T
v

hence

p
∗
(u, v) ≥ p

∗
(0, 0) − λ

∗T
u− ν

∗T
v

• the figure shows this for optimization problem with one inequality constraint and no

equality constraint

u
u = 0

p∗(u)

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@

p∗(0) − λ∗Tu− ν∗Tv
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Global sensitivity analysis via perturbed problems

• recall

p
∗
(u, v) ≥ p

∗
(0, 0) − λ

∗T
u− ν

∗T
v

• interpretations

– if λ∗
i is large, when i-th inequality constraint is tightened, optimal value increases a

lot

– if λ∗
i is small, when i-th inequality constraint is relaxed, optimal value decreases not

a lot

– if |ν∗
i | is large, reducing vi when ν

∗
i > 0 or increasing vi when ν

∗
i < 0 increases

optimval value a lot

– if |ν∗
i | is small, increasing vi when ν

∗
i > 0 or decreasing vi when ν

∗
i < 0 decreases

optimval value not a lot

• it only gives lower bounds - will explore local behavior
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Local sensitivity analysis via perturbed problems

• assume p∗(u, v) is differentiable with respect to u and v, i.e., ∇(u,v)p
∗(u, v) exist

– then

∂

∂ui
p
∗
(0, 0) = lim

h→0+

p∗(hei, 0) − p∗(0, 0)

h
≥ lim

h→0+

−λ∗T (hei)

h
= −λi

and

∂

∂ui
p
∗
(0, 0) = lim

h→0−

p∗(hei, 0) − p∗(0, 0)

h
≤ lim

h→0−

−λ∗T (hei)

h
= −λi

– obtain same result for vi, hence

∇u p
∗
(0, 0) = −λ ∇v p

∗
(0, 0) = −ν

• so larger λi or |νi| means larger change in optimal value of perturbed problem when

ui or vi change a bit and vice versa quantitatively, - λi an νi provide exact ratio and

direction
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Different dual problems for equivalent optimization problems - 1

• introducing new variables and equality constraints for unconstrained problems

– unconstrained optimization problem

minimize f(Ax+ b)

- dual Lagrange function is g = p∗, hence strong duality holds, which, however,

does not provide useful information

– reformulate as equivalent optimization problem

minimize f(y)

subject to Ax+ b = y

- Lagrangian - L(x, y, ν) = f(y) + νT (Ax+ b− y)

- Lagrange dual function - g(ν) = −I(ATν = 0) + bTν − f∗(ν)

- dual optimization problem

maximize bTν − f∗(ν)

subject to ATν = 0
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• examples

– unconstrained geometric problem

minimize log
(∑m

i=1 exp(a
T
i x+ bi)

)
- reformulation

minimize log (
∑m

i=1 exp(yi))

subject to Ax+ b = y

- dual optimization problem

maximize bTν −
∑m

i=1 νi log νi
subject to 1Tν = 1

ATν = 0

ν ⪰ 0

which is entropy maximization problem

– norm minimization problem

minimize ∥Ax− b∥
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- reformulation
minimize ∥y∥
subject to Ax− b = y

- dual optimization problem

maximize bTν

subject to ∥ν∥∗ ≤ 1

ATν = 0
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Different dual problems for equivalent optimization problems - 2

• introducing new variables and equality constraints for constrained problems

– inequality constrained optimization problem

minimize f0(A0x+ b0)

subject to fi(Aix+ bi) ≤ 0 i = 1, . . . ,m

– reformulation
minimize f0(y0)

subject to fi(yi) ≤ 0 i = 1, . . . ,m

Aix+ bi = yi i = 0, . . . ,m

– dual optimization problem

maximize
∑m

i=0 ν
T
i bi − f∗

0 (ν0) −
∑m

i=1 λif
∗
i (νi/λi)

subject to
∑m

i=0A
T
i νi = 0

λ ⪰ 0
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• examples

– inequality constrained geometric program

minimize log (
∑

exp(A0x+ b0))

subject to log (
∑

exp(Aix+ bi)) ≤ 0 i = 1, . . . ,m

where Ai ∈ RKi×n and exp(z) := (exp(z1), . . . , exp(zk))) ∈ Rn and
∑
z :=∑k

i=1 zi ∈ R for z ∈ Rk

- reformulation

minimize log (
∑

exp(y0))

subject to log (
∑

exp(yi)) ≤ 0 i = 1, . . . ,m

Aix+ bi = yi i = 0, . . . ,m
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- dual optimization problem

maximize
∑m

i=0 b
T
i νi − νT0 log(ν0) −

∑m
i=1 ν

T
i log(νi/λi)

subject to νi ⪰ 0 i = 0, . . . ,m

1Tν0 = 1, 1Tνi = λi i = 1, . . . ,m

λi ≥ 0 i = 1, . . . ,m∑m
i=0A

T
i νi = 0

where and log(z) := (log(z1), . . . , log(zk))) ∈ Rn for z ∈ Rk++

- simplified dual optimization problem

maximize
∑m

i=0 b
T
i νi − νT0 log(ν0) −

∑m
i=1 ν

T
i log(νi/1

Tνi)

subject to νi ⪰ 0 i = 0, . . . ,m

1Tν0 = 1∑m
i=0A

T
i νi = 0
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Different dual problems for equivalent optimization problems - 3

• transforming objectives

– norm minimization problem

minimize ∥Ax− b∥

– reformulation
minimize (1/2)∥y∥2

subject to Ax− b = y

– dual optimization problem

maximize −(1/2)∥ν∥2
∗ + bTν

subject to ATν = 0

Searching for Universal Truths - Convex Optimization - Duality 606



Sunghee Yun August 4, 2025

Different dual problems for equivalent optimization problems - 4

• making contraints implicit

– LP with box constraints

minimize cTx

subject to Ax = b, l ⪯ x ⪯ u

– dual optimization problem

maximize −bTν − λT1 u+ λT2 l

subject to ATν + λ1 − λ2 + c = 0, λ1 ⪰ 0, λ2 ⪰ 0

– reformulation
minimize cTx+ I(l ⪯ x ⪯ u)

subject to Ax = b

– dual optimization problem for reformulated primal problem

maximize −bTν − uT (ATν + c)− + lT (ATν + c)+
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Weak alternatives

Theorem 87. [weak alternatives of two systems] for q : Q → Rm & h : H → Rp

where Q and H are subsets of common set X, which is subset of Banach space, assuming

D = Q ∩ H ̸= ∅, and λ ∈ Rm & ν ∈ Rp, below two systems of inequalities and

equalities are weak alternatives, i.e., at most one of them is feasible

q(x) ⪯ 0 h(x) = 0

and

λ ⪰ 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
> 0

• can prove Theorem 87 using duality of optimization problems

• consider primal and dual problems

– primal problem
minimize 0

subject to q(x) ⪯ 0

h(x) = 0
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– dual problem
maximize g(λ, ν)

subject to λ ⪰ 0

where

g(λ, ν) = inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
• then p∗, d∗ ∈ {0,∞}
• now assume first system of Theorem 87 is feasible, then p∗ = 0, hence weak duality

applies d∗ = 0, thus there exist no λ and ν such that λ ⪰ 0 and g(λ, ν) > 0

i.e., second system is infeasible, since otherwise there exist λ and ν making g(λ, ν)

arbitrarily large; if λ̃ ⪰ 0 and ν̃ satisfy g(λ, ν) > 0, g(αλ̃, αν̃) = αg(λ̃, ν̃) goes to

∞ when α → ∞
• assume second system is feasible, then g(λ, ν) can be arbitrarily large for above

reasons, thus d∗ = ∞, hence weak duality implies p∗ = ∞, which implies first system

is infeasible

• therefore two systems are weak alternatives; at most one of them is feasible

(actually, not hard to prove it without using weak duality)
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Weak alternatives with strict inequalities

Theorem 88. [weak alternatives of two systems with strict inequalities] for q :

Q → Rm & h : H → Rp where Q and H are subsets of common set X, which

is subset of Banach space, assuming D = Q ∩H ̸= ∅, and λ ∈ Rm & ν ∈ Rp, below
two systems of inequalities and equalities are weak alternatives, i.e., at most one of them

is feasible

q(x) ≺ 0 h(x) = 0

and

λ ⪰ 0 λ ̸= 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
≥ 0
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Strong alternatives

Theorem 89. [strong alternatives of two systems] for convex q : Q → Rm & affine

h : H → Rp where Q and H are subsets Rn assuming D = Q ∩H ̸= ∅ and λ ∈ Rm

& ν ∈ Rp, if exists x ∈ relintD with h(x) = 0, below two systems of inequalities and

equalities are strong alternatives, i.e., exactly one of them is feasible

q(x) ⪯ 0 h(x) = 0

and

λ ⪰ 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
> 0
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Strong alternatives with strict inequalities

Theorem 90. [strong alternatives of two systems with strict inequalities] for convex

q : Q → Rm & affine h : H → Rp where Q and H are subsets Rn assuming

D = Q∩H ̸= ∅ and λ ∈ Rm & ν ∈ Rp, if exists x ∈ relintD with h(x) = 0, below

two systems of inequalities and equalities are strong alternatives, i.e., exactly one of them

is feasible

q(x) ≺ 0 h(x) = 0

and

λ ⪰ 0 λ ̸= 0 inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
≥ 0

• proof - consider convex optimization problem and its dual

– primal problem
minimize s

subject to q(x) − s1 ⪯ 0

h(x) = 0
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– dual problem
maximize g(λ, ν)

subject to λ ⪰ 0 1Tλ = 1

where g(λ, ν) = infx∈D
(
λTq(x) + νTh(x)

)
• first observe Slater’s condition holds for primal problem since by hypothesis of

Theorem 90, exists y ∈ relintD with h(y) = 0, hence (y, q(y)) ∈ Q× R is primal

feasible satisifying Slater’s condition

• hence Slater’s theorem (Theorem 84) implies d∗ = p∗

• assume first system is feasible, then primal problem is strictly feasible and d∗ = p∗ < 0,

hence second system infeasible since otherwise feasible point for second system is

feasible point of dual problem, hence d∗ ≥ 0

• assume first system is infeasible, then d∗ = p∗ ≥ 0, hence Slater’s theorem

(Theorem 84) implies exists dual optimal (λ∗, ν∗) (whether or not d∗ = ∞), hence

(λ∗, ν∗) is feasible point for second system of Theorem 90

• therefore two systems are strong alternatives; each is feasible if and only if the other is

infeasible
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Strong alternatives for linear inequalities

• dual function of feasibility problem for Ax ⪯ b is

g(λ) = inf
x∈Rn

λ
T
(Ax− b) =

{
−bTλ ATλ = 0

−∞ otherwise

• hence alternative system is λ ⪰ 0, bTλ < 0, ATλ = 0

• thus Theorem 89 implies below systems are strong alternatives

Ax ⪯ b & λ ⪰ 0 b
T
λ < 0 A

T
λ = 0

• similarly alternative system is λ ⪰ 0, bTλ < 0, ATλ = 0 and Theorem 89 implies

below systems are strong alternatives

Ax ≺ b & λ ⪰ 0 λ ̸= 0 b
T
λ ≤ 0 A

T
λ = 0
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Farkas’ lemma

Theorem 91. [Farkas’ lemma] below systems of inequalities and equalities are strong

alternatives

Ax ⪯ 0 c
T
x < 0 & A

T
y + c = 0 y ⪰ 0

• will prove Theorem 91 using LP and its dual

• consider LP
(
minimize cTx subject to Ax ⪯ 0

)
• dual function is g(y) = inf

x∈Rn
(
cTx+ yTAx

)
=

{
0 ATy + c = 0

−∞ otherwise

• hence dual problem is
(
maximize 0 subject to ATy + c = 0, y ⪰ 0

)
• assume first system is feasible, then homogeneity of primal problem implies p∗ = −∞,

thus d∗, i.e., dual is infeasible, hence second system is infeasible

• assume first system is infeasible, since primal is always feasible, p∗ = 0, hence strong

duality implies d∗ = 0, thus second system is feasible
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Optimization problems with generalized inequalities

Definition 200. [optimization problems with generalized inequalities] for f : F →
R, q : Q →×m

i=1
Rki, h : H → Rp where F , Q, and H are subsets of common set X

minimize f(x)

subject to q(x) ⪯K 0

h(x) = 0

called optimization problem with generalized inequalities where K =×Ki is proper cone

with m proper cones K1 ⊂ Rk1, . . . , Kn ⊂ Rkm

- every terminology and associated notation is same as of optimization problem in

Definition 175 such as objective & inequality & equality contraint functions, domain

of optimization problem D, feasible set F , optimal value p∗

- note that when Ki = R+ (hence K = Rm+ ), above optimization problem coincides

with that in Definition 175, i.e., optimization problems with generalized inequalities

subsume (normal) optimization problems
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Lagrangian for generalized inequalities

Definition 201. [Lagrangian for generalized inequalities] for optimization problem in

Definition 200 with nonempty domain D, function L : D ××m

i=1
Rki × Rp → R defined

by

L(x, λ, ν) = f(x) + λ
T
q(x) + ν

T
h(x)

called Lagrangian associated with the optimization problem where

- every terminology and associated notation is same as of optimization problem in

Definition 191 such as dual variables or Lagrange multipliers λ and ν.

- Lagrangian for generalized inequalities subsumes (normal) Lagrangian (Definition 191)
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Lagrange dual functions for generalized inequalities
Definition 202. [Lagrange dual functions for generalized inequalities] for optimization

problem in Definition 200 for which Lagrangian is defined, function g :×Rki × Rp →
R ∪ {−∞} defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f(x) + λ

T
q(x) + ν

T
h(x)

)
called Lagrange dual function or just dual function associated with optimization problem

- Lagrange dual functions for generalized inequalities subsume (normal) Lagrange dual

functions (Definition 192)

• g is concave function

• g(λ, ν) is lower bound for optimal value of associated optimization problem i.e.,

g(λ, ν) ≤ p
∗

for every λ ⪰∗
K 0 where K∗ denotes dual cone of K, i.e., K∗ =×K∗

i where

K∗
i ⊂ Rki is dual cone of Ki ⊂ Rki

• (λ, ν) with λ ⪰K 0 and g(λ, ν) > −∞ said to be dual feasible
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Lagrange dual problems for generalized inequalities

Definition 203. [Lagrange dual problems for generalized inequalities] for optimization

problem in Definition 200, optimization problem

maximize g(λ, ν)

subject to λ ⪰K∗ 0

where K∗ denotes dual cone of K, i.e., K∗ =×K∗
i where K∗

i ⊂ Rki is dual cone of

Ki ⊂ Rki, called Lagrange dual problem associated with problem in Definition 200

- every terminology and related notation is same as that in Definition 193 such as dual

feasibility, dual optimal value d∗, optimal Lagrange multipliers (λ∗, ν∗)

- Lagrange dual problems for generalized inequalities subsume (normal) Lagrange dual

problems (Definition 193)

• Lagrange dual problem in Definition 203 is convex optimization since g(λ, ν) is convex
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Slater’s theorem for generalized inequalities

Theorem 92. [Slater’s theorem for generalized inequalities] if optimization problem

in Definition 200 is convex, i.e., f is convex, q is K-convex (i.e., every qi is Ki-convex)

(Definition 173), and exists feasible x ∈ D contained in relintD such that

q(x) ≺K 0 h(x) = 0

strong duality holds (and dual optimal value is attained when d∗ > −∞)

- such condition, called Slater’s condition

- such point, (sometimes) said to be strictly feasible

- note resemblance with Slater’s theorem in Theorem 84
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Duality for SDP

• (inequality form) SDP

minimize cTx

subject to x1F1 + · · · + xnFn +G ⪯ 0

where F1, . . . , Fn, G ∈ Sk and K = Sk+

• Lagrangian

L(x, Z) = c
T
x+ (x1F1 + · · ·+ xnFn+G) •Z =

∑
xi(Fi •Z + ci) +G •Z

where X • Y = TrXY for X,Y ∈ Sk
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• Lagrange dual function

g(Z) = inf
x∈Rn

L(x, Z) =

{
G • Z Fi • Z + ci = 0 i = 1, . . . , n

−∞ otherwise

• Lagrange dual problem

maximize G • Z
subject to Fi • Z + ci = 0 i = 1, . . . , n

Z ⪰ 0

where fact that Sk+ is self-dual, i.e., K∗ = K

• Slater’s theorem (Theorem 92) implies if primal problem is strictly feasible, i.e., exists

x ∈ Rn such that
∑
xiFi +G ≺ 0, strong duality holds
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KKT optimality conditions for generalized inequalities

Definition 204. [KKT optimality conditions for generalized inequalities] for optimization

problem in Definition 200 where f , q, and h are all differentiable, below conditions for

x ∈ D and (λ, ν) ∈×Rki × Rp

q(x) ⪯K 0 - primal feasibility

h(x) = 0 - primal feasibility

λ ⪰K∗ 0 - dual feasibility

λ
T
q(x) = 0 - complementary slackness

∇xL(x, λ, ν) = 0 - vanishing gradient of Lagrangian

called Karush-Kuhn-Tucker (KKT) optimality conditions

- note KKT optimality conditions for generalized inequalities subsume (normal) KKT

optimality conditions (Definition 199)
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KKT conditions and optimalities for generalized inequalities

• for every optimization problem with generalized inequalities (Definition 200), every

statement for normal optimization problem (Definition 175), regarding relations among

KKT conditions, optimality, primal and dual optimality, and strong duality, is exactly

the same

– for every optimization problem with generalized inequalities (Definition 200)

- if strong duality holds, primal and dual optimal points satisfy KKT optimality

conditions in Definition 204 (same as Theorem 85)

- if optimization problem is convex and primal and dual solutions satisfy KKT

optimality conditions in Definition 204, the solutions are optimal with strong

duality (same as Theorem 86)

- therefore, for convex optimization problem, KKT optimality conditions are necessary

and sufficient for primal and dual optimality with strong duality

Searching for Universal Truths - Convex Optimization - Convex Optimization with Generalized Inequalities 626



Sunghee Yun August 4, 2025

Perturbation and sensitivity analysis for generalized inequalities

• original problem in Definition 200 with perturbed constraints

minimize f(x)

subject to q(x) ⪯K u

h(x) = v

where u ∈ Rm and v ∈ Rp

• define p∗(u, v) = p∗(u, v) = inf{f(x)|x ∈ D, q(x) ⪯ u, h(x) = v}, which is

convex when problem is convex optimization problem - note p∗(0, 0) = p∗

• as for normal optimization problem case (page 596), if and dual optimum (λ∗, ν∗), if

strong duality holds,

p
∗
(u, v) ≥ p

∗
(0, 0) − λ

∗T
u− ν

∗T
v

and

∇u p
∗
(0, 0) = −λ ∇v p

∗
(0, 0) = −ν
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Sensitivity analysis for SDP

• assume inequality form SDP and its dual problem on page 623 and page 624

• consider perturbed SDP

minimize cTx

subject to x1F1 + · · · + xnFn +G ⪯ U

for some U ∈ Sk

– define p∗ : Sk → R such that p∗(U) is optimal value of above problem

• assume x∗ ∈ Rn and Z∗ ∈ Sk+ are primal and dual optimum with zero dualty gap

• then

p
∗
(U) ≥ p

∗ − Z
∗ • U

• if ∇Up
∗ exists at U = 0

∇Up
∗
(0) = −Z∗
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Weak alternatives for generalized inequalities

Theorem 93. [weak alternatives for generalized inequalities] for q : Q → ×Rki

& h : H → Rp where Q and H are subsets of common Banach space assuming

D = Q ∩ H ̸= ∅, and λ ∈×Rki & ν ∈ Rp, below pairs of systems are strong

alternatives

q(x) ⪯K 0 h(x) = 0 & λ ⪰K∗ 0 g(λ, ν) > 0

q(x) ≺K 0 h(x) = 0 & λ ⪰K∗ 0 λ ̸= 0 g(λ, ν) ≥ 0

where K =×Ki with proper cones Ki ⊂ Rki and function g :×Rki × Rp → R
defined by

g(λ, ν) = inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
note this theorem subsumes Theorem 87 and Theorem 88
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Strong alternatives for generalized inequalities

Theorem 94. [strong alternatives for generalized inequalities] for K-convex q :

Q → ×Rki & affine h : H → Rp where Q and H are subsets of Rn assuming

D = Q ∩H ̸= ∅, and λ ∈×Rki & ν ∈ Rp, if exists x ∈ relintD with h(x) = 0,

below pairs of systems are strong alternatives

q(x) ⪯K 0 h(x) = 0 & λ ⪰K∗ 0 g(λ, ν) > 0

q(x) ≺K 0 h(x) = 0 & λ ⪰K∗ 0 λ ̸= 0 g(λ, ν) ≥ 0

where K =×Ki with proper cones Ki ⊂ Rki and function g :×Rki × Rp → R
defined by

g(λ, ν) = inf
x∈D

(
λ
T
q(x) + ν

T
h(x)

)
note this theorem subsumes Theorem 89 and Theorem 90
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Strong alternatives for SDP

• for F1, . . . , Fn, G ∈ Sk, x ∈ Rn, and Z ∈ Sk

– below systems are strong alternatives

x1F1 + · · · + xnFn +G ≺ 0

and

Z ⪰ 0 Z ̸= 0 G • Z ≥ 0 Fi • Z = 0 i = 1, . . . , n

– if
∑
viFi ⪰ 0 ⇒

∑
viFi = 0, below systems are strong alternatives

x1F1 + · · · + xnFn +G ⪯ 0

and

Z ⪰ 0 G • Z > 0 Fi • Z = 0 i = 1, . . . , n
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Unconstrained minimization

• consider unconstrained convex optimization problem, i.e.,m = p = 0 in Definition 179

minimize f(x)

where domain of optimization problem is D = F ⊂ Rn

• assume

– f is twice-differentiable (hence by definition F is open)

– optimal solution x∗ exists, i.e., p∗ = infx∈D f(x) = f(x∗)

• Theorem 80 implies x∗ is optimal solution if and only if

∇f(x∗
) = 0

• can solve above equation directly for few cases, but usually depend on iterative method,

i.e., find sequence of points x(0), x(1), . . . ∈ F such that limk→∞ f(x
(k)) = p∗
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Requirements for iterative methods

• requirements for iterative methods

– initial point x(0) should be in domain of optimization problem, i.e.

x
(0) ∈ F

– sublevel set of f(x(0))

S =
{
x ∈ F

∣∣∣f(x) ≤ f(x
(0)

)
}

should be closed

• e.g.

– sublevel set of f(x(0)) is closed for all x(0) ∈ F if f is closed, i.e., all its sublevel

sets are closed

– f is closed if F = Rn and f is continuous

– f is closed if f is continuous, F is open, and f(x) → ∞ as x → bdF
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Unconstrained minimization examples

• convex quadratic problem

minimize f(x) = (1/2)xTPx+ qTx

where P ∈ Sn+ and q ∈ Rn

– solution obtained by solving

∇f(x∗
) = Px

∗
+ q = 0

- if solution exists, x∗ = −P †q (thus p∗ > −∞)

- otherwise, problem is unbounded below, i.e., p∗ = −∞

– ability to analytically solve quadratic minimization problem is basis for Newton’s

method, power method for unconstrained minimization
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– least-squares (LS) is special case of convex quadratic problem

minimize (1/2)∥Ax− b∥2
2 = (1/2)xT (ATA)x− bTAx+ (1/2)∥b∥2

2

- optimal always exists, can be obtained via normal equations

A
T
Ax

∗
= b

• unconstrained GP

minimize f(x) = log (
∑

exp(Ax+ b))

for A ∈ Rm×n and b ∈ Rm

– solution obtained by solving

∇f(x∗
) =

∑
AT exp(Ax∗ + b)∑
exp(Ax∗ + b)

= 0
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– need to resort to iterative method - since F = Rn and f is continuous, f is closed,

hence every point in Rn can be initial point

• analytic center of linear inequalities

minimize f(x) = −
∑

log(b− Ax)

where F = {x ∈ Rn|b− Ax ≻ 0}

– need to resort to iterative method - since F is open, f is continuous, and f(x) → ∞
as x → bdF , f is closed, hence every point in F can be initial point

– f , called logarithmic barrier for inequalities Ax ⪯ b

Searching for Universal Truths - Convex Optimization - Unconstrained Minimization 637



Sunghee Yun August 4, 2025

• analytic center of LMI

minimize f(x) = − log detF (x) = log detF (x)−1

where F : Rn → Sk is defined by

F (x) = x1F1 + · · · + xnFn

where Fi ∈ Sk and F = {x ∈ Rn|F (x) ≻ 0}

– need to resort to iterative method - since F is open, f is continuous, and f(x) → ∞
as x → bdF , f is closed, hence every point in F can be initial point

– f , called logarithmic barrier for LMI
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Strong convexity and implications

• function f is strongly convex on S

(∃m > 0) (∀x ∈ S)
(
∇2
f(x) ⪰ mI

)
• strong convexity implies for every x, y ∈ S

f(y) ≥ f(x) + ∇f(x)T (y − x) + (m/2)∥y − x∥2
2

– which implies gradient provides optimality certificate and tells us how far current

point is from optimum, i.e.

f(x) − p
∗ ≤ (1/2m)∥∇f(x)∥2

2 ∥x− x
∗∥2 ≤ (2/m)∥∇f(x)∥2

• first equation implies sublevel sets contained in S is bounded, hence continuous function

∇2f(x) is also bounded, i.e., (∃M > 0)
(
∇2f(x) ⪯ MI

)
, then

f(x) − p
∗ ≥

1

2M
∥∇f(x)∥2

2
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Iterative methods

Definition 205. [iterative meethods] numerical method generating sequence of points

x(0), x(1), . . . ∈ S ⊂ Rn to make f(x(k)) approaches to some desired value from some

f : S → R, called iterative method

Definition 206. [iterative meethods with search directions] iterative method generating

search direction ∆x(k) ∈ Rn and step length t(k) > 0 at each step k such that

x
(k+1)

= x
(k)

+ t
(k)

∆x
(k)

called iterative method with search direction where ∆x(k), called search direction, t(k),

called step length (which actually is not length)

Definition 207. [descent methods] for function f : S → R, iterative method reducing

function value, i.e.

f(x
(k+1)

) ≤ f(x
(k)

)

for k = 0, 1, . . ., called descent method
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Line search methods

Definition 208. [line search method] for iterating method with search directions,

determining search direction ∆x(k) and step length t(k) for each step, called line search

method

Algorithm 1. [exact line search] for descent iterating method with search directions,

determine t by

t = argmin
s>0

f(x+ s∆x)

Algorithm 2. [backtracking line search] for descent iterating method with search

directions, determine t by

Require: f , ∆x(k), α ∈ (0, 0.5), β ∈ (0, 1)

t := 1

while f(x(k) + t∆x(k)) > f(x(k)) + αt∇f(x(k))T∆x(k) do

t := βt

end while
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Gradient descent method

Algorithm 3. [gradient descent method]

Require: f , initial point x ∈ dom f

repeat

search direction - ∆x := −∇f(x)
do line search to choose t > 0

update - x := x+ t∆x

until stopping criterion satisfied
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Summary of gradient descent method

• gradient method often exhibits approximately linear convergence, i.e., error f(x(k))−p∗
converges to zero approximately as geometric series

• choice of backtracking parameters α and β has noticeable but not dramatic effect on

convergence

• exact line search sometimes improves convergence of gradient method, but not by large,

hence mostly not worth implementation

• converge rate depends greatly on condition number of Hessian or sublevel sets - when

condition number if large, gradient method can be useless
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Newton’s method - motivation

• second-order Taylor expansion of f - f̂(∆x) = f(x+∆x) = f(x)+∇f(x)T∆x+
1
2∆x

T∇2f(x)∆x

• minimum of Taylor expansion achieved when ∇f̂(∆x) = ∇f(x) + ∇2f(x)v = 0

• solution called Newton step

∆xnt(x) = −∇2
f(x)

−1∇f(x)

assuming ∇2f(x) ≻ 0

• thus Newton step minimizes local quadratic approximation of function

• difference of current and quadratic approximation minimum

f(x) − f̂(∆xtn(x)) =
1

2
∆x

T
nt∇

2
f(x)∆xnt =

1

2
λ(x)

2

• Newton decrement

λ(x) =
√

∆xnt(x)T∇2f(x)∆xnt(x) =
√

∇f(x)T∇2f(x)−1∇f(x)

Searching for Universal Truths - Convex Optimization - Unconstrained Minimization 644



Sunghee Yun August 4, 2025

Newton’s method

Algorithm 4. [Newton’s method] damped descent method using Newton step

Require: f , initial point x ∈ dom f , tolerance ϵ > 0

loop

computer Newton step and descrement

∆xnt(x) := −∇2
f(x)

−1∇f(x)

λ(x)
2
:= ∇f(x)T∇2

f(x)
−1∇f(x)

stopping criterion - quit if λ(x)2/2 < ϵ

do line search to choose t > 0

update - x := x+ t∆xnt

end loop

• Newton step is descent direction since(
d

dx
f(x+ t∆xnt)

)∣∣∣∣
t=0

= ∇f(x)T∆xnt = −λ(x)2 < 0
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Assumptions for convergence analysis of Newton’s method

• assumptions

– strong convexity and boundedness of Hessian on sublevel set

(∃ m,M > 0) (∀x ∈ S)
(
mI ⪯ ∇2

f(x) ⪯ MI
)

– Lipschitz continuity of Hessian on sublevel set

(∃L > 0) (∀x, y ∈ S)
(
∥∇2

f(x) − ∇2
f(y)∥2 ≤ L∥x− y∥2

)

• Lipschitz continuity constant L plays critical role in performance of Newton’s method

– intuition says Newton’s method works well for functions whose quadratic

approximations do not change fast, i.e., when L is small
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Convergence analysis of Newton’s method

Theorem 95. [convergence analysis of Newton’s method] for function f satisfying

strong convexity, Hessian continuity & Lipschitz continuity with m,M,L > 0, exist

0 < η < m2/L and γ > 0 such that for each step k

- damped Newton phase - if ∥∇f(x(k))∥2 ≥ η,

f(x
(k+1)

) − f(x
(k)

) ≤ −γ

- quadratic convergence phase - if ∥∇f(x(k))∥2 < η, backtracking line search selects

step length t(k) = 1

L

2m2
∥∇f(x(k+1)

)∥2 ≤
(

L

2m2
∥∇f(x(k)

)∥2

)2

# iterations of Newton’s method required to satisfy stopping criterion f(x(k)) − p∗ ≤ ϵ

is
f(x(0)) − p∗

γ
+ log2 log2(ϵ0/ϵ) where ϵ0 = 2m

3
/L

2
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Summary of Newton’s method

• Newton’s method is affine invariant, hence performance is independent of condition

number unlike gradient method

• once entering quadratic convergence phase, Newton’s method converges extremely fast

• performance not much dependent on choice of algorithm parameters

• big disadvantage is computational cost for evaluating search direction, i.e., solving

linear system
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Self-concordance

Definition 209. [self-concordance] convex function f : X → R with X ⊂ Rn such

that for all x ∈ X, v ∈ Rn, g(t) = f(x + tv) with dom g = {t ∈ R|x + tv ∈ X}
satisfies

(∀t ∈ dom g)
(
|g′′′(t)| ≤ 2g

′′
(t)

3/2
)

Proposition 44. [self-concordance for logarithms] if convex function g : X → R
with X ⊂ R++ satisfies

|g′′′(x)| ≤ 3g
′′
(x)/x

function f with dom f = {x ∈ R++|g(x) < 0} defined by

f(x) = − log(−g(x)) − log x

and function h with domh = {x ∈ R++|g(x) + ax2 + bx + c < 0} with a ≥ 0

defined by

h(x) = − log(−g(x) − ax
2 − bx− c) − log x

are self-concordant
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Why self-concordance?

• convergence analysis of Newton’s method depends on assumptions about function

characteristics, e.g., m,M,L > 0 for strong convexity, continuity of Hessian, i.e.

mI ⪯ ∇2
f(x) ⪯ MI ∥∇2

f(x) − ∇2
f(y)∥ ≤ L∥x− y∥

• self-concordance discovered by Nesterov and Nemirovski (who gave name self-

concordance) plays important role for reasons such as

– convergence analysis does not depend any function characterizing paramters

– many barrier functions which are used for interior-point methods, which are important

class of optimization algorithms are self-concordance

– property of self-concordance is affine invariant
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Self-concordance preserving operations

Proposition 45. [self-concordance preserving operations] self-concordance is preserved

by positive scaling, addition, and affine transformation, i.e., if f, g : X → R are self-

concordant functions with X ⊂ Rn, h : H → Rn with H ⊂ Rm are affine functions,

and a > 0

af, f + g, f ◦ h

are self-concordant where dom f ◦ h = {x ∈ H|h(x) ∈ X}
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Self-concordant function examples

• negative logarithm - f : R++ → R with

f(x) = − log x

is self-concordant since

|f ′′′
(x)|/f ′′

(x)
3/2

=
(
2/x

3
)
/
(
(1/x

2
)
3/2
)

= 2

• negative entropy plus negative logarithm - f : R++ → R with

f(x) = x log x− log x

is self-concordant since

|f ′′′
(x)|/f ′′

(x)
3/2

= (x+ 2)/(x+ 1)
3/2 ≤ 2
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• log barrier for linear inequalities - for A ∈ Rm×n and b ∈ Rm

f(x) = −
∑

log(b− Ax)

with dom f = {x ∈ Rn|b−Ax ≻ 0} is self-concordant by Proposition 45, i.e., f is

affine transformation of sum of self-concordant functions
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• log-determinant - f : Sn++ → R with

f(X) = log detX
−1

= − log detX

is self-concordant since for every X ∈ Sn++ and V ∈ Sn function g : R → R
defined by g(t) = − log det(X + tV ) where dom f = {t ∈ R|X + tV ⪰ 0} is

self-concordant since

g(t) = − log det(X
1/2

(I + tX
−1/2

V X
−1/2

)X
1/2

)

= − log detX − log det(I + tX
−1/2

V X
−1/2

)

= − log detX −
∑

log(1 + tλi(X,V ))

where λi(X,V ) is i-th eigenvalue ofX−1/2V X1/2 is self-concordant by Proposition 45,

i.e., g is affine transformation of sum of self-concordant functions
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• log of concave quadratic - f : X → R with

f(x) = − log(−xTPx− q
T
x− r)

where P ∈ Sn+ and X = {x ∈ Rn|xTPx+ qTx+ r < 0}
• function f : X → R with

f(x) = − log(−g(x)) − log x

where dom f = {x ∈ dom g ∩ R++|g(x) < 0} and function h : H → R

h(x) = − log(−g(x) − ax
2 − bx− c) − log x

where a ≥ 0 and domh = {x ∈ dom g ∩ R++|g(x) + ax2 + bx + c < 0} are

self-concordant if g is one of below

– g(x) = −xp for 0 < p ≤ 1

– g(x) = − log x

– g(x) = x log x
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– g(x) = xp for −1 ≤ p ≤ 0

– g(x) = (ax+ b)2/x for a, b ∈ R

since above g satisfy |g′′′(x)| ≤ 3g′′(x)/x for every x ∈ dom g (Proposition 44)

• function f : X → R with X = {(x, y)|∥x∥2 < y} ⊂ Rn × R++ defined by

f(x, y) = − log(y
2 − x

T
x)

is self-concordant - can be proved using Proposition 44

• function f : X → R with X = {(x, y)||x|p < y} ⊂ R × R++ defined by

f(x, y) = −2 log y − log(y
2/p − x

2
)

where p ≥ 1 is self-concordant - can be proved using Proposition 44

• function f : X → R with X = {(x, y)| exp(x) < y} ⊂ R × R++ defined by

f(x, y) = − log y − log(log y − x)

is self-concordant - can be proved using Proposition 44
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Properties of self-concordant functions

Definition 210. [Newton decrement] for convex function f : X → R with X ⊂ Rn,
function λ : X̃ → R+ with X̃ = {x ∈ X|∇2f(x) ≻ 0} defined by

λ(x) = (∇f(x)T∇2
f(x)

−1∇f(x))1/2

called Newton decrement

- note

λ(x) = sup
v ̸=0

(
v
T∇f(x)/

(
v
T∇2

f(x)v
)1/2

)
Theorem 96. [optimality certificate for self-concordant functions] for strictly convex

self-concordant function f : X → Rn with X ⊂ Rn, Hessian is positive definition

everywhere (hence Newton decrement is defined everywhere) and for every x ∈ X

p
∗ ≥ f(x) − λ(x)

2 ⇔ f(x) − p
∗ ≤ λ(x)

2

if λ(x) ≤ 0.68
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Stopping criteria for self-concordant objective functions

• recall λ(x)2 provides approximate optimality certificate, (page 644) i.e., assuming f is

well approximated by quadratic function around x

f(x) − p
∗ ⪅ λ(x)

2
/2

• however, strict convexity together with self-concordance provides proven bound (by

Theorem 96)

f(x) − p
∗ ≤ λ(x)

2

for λ(x) ≤ 0.68

• hence can use following stopping criterion for guaranteed bound

λ(x)
2 ≤ ϵ ⇒ f(x) − p

∗ ≤ ϵ

for ϵ ≤ 0.682
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Convergence analysis of Newton’s method for self-concordant
functions

Theorem 97. [convergence analysis of Newton’s method for self-concordant functions]
for strictly convex self-concordant function f , exist 0 < η ≤ 1/4 and γ > 0 (which

depend only on line search parameters) such that

- damped Newton phase - if λ(x(k)) > η

f(x
(k+1)

) − f(x
(k)

) ≤ −γ

- quadratic convergence phase - if λ(x(k)) ≤ η backtracking line search selects step

length t(k) = 1

2λ(x
(k+1)

) ≤
(
2λ(x

(k)
)
)2

# iterations required to satisfy stopping criterion f(x(k)) − p∗ ≤ ϵ is(
f(x

(0)
) − p

∗
)
/γ + log2 log2(1/ϵ)

where γ = αβ(1 − 2α)2/(20 − 8α)
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Equality constrained minimization

• consider equality constrained convex optimization problem, i.e.,m = 0 in Definition 179

minimize f(x)

subject to Ax = b

where A ∈ Rp×n and domain of optimization problem is D = F ⊂ Rn

• assume

– rankA = p < n, i.e., rows of A are linearly independent

– f is twice-differentiable (hence by definition F is open)

– optimal solution x∗ exists, i.e., p∗ = infx∈F f(x) = f(x∗) and Ax∗ = b
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Solving KKT for equality constrained minimization

• Theorem 86 implies x∗ ∈ F is optimal solution if and only if exists ν∗ ∈ Rp satisfy

KKT optimality conditions, i.e.,

Ax
∗
= b primal feasibility equations

∇f(x∗
) + A

T
ν
∗
= 0 dual feasibility equations

• solving equality constrained problem is equivalent to solving KKT equations

– handful types of problems can be solved analytically

• using unconstrained minimization methods

– can eliminate equality constraints and apply unconstrained minimization methods

– solving dual problem using unconstrained minimization methods and retrieve primal

solution (refer to page 595)

• will discuss Newton’s method directly handling equality constraints

– preserving problem structure such as sparsity
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Equality constrained convex quadratic minimization

• equality constrained convex quadratic minimization problem

minimize f(x) = (1/2)xTPx+ qTx

subject to Ax = b

where P ∈ Sn+ and A ∈ Rp×n

• important since basis for extension of Newton’s method to equality constrained problems

• KKT system

Ax
∗
= b & Px

∗
+ q + A

T
ν
∗
= 0 ⇔

[
P AT

A 0

]
︸ ︷︷ ︸
KKT matrix

[
x∗

ν∗

]
=

[
−q
b

]

• exist primal and dual optimum (x∗, ν∗) if and only if KKT system has solution;

otherwise, problem is unbounded below
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Eliminating equality constraints

• can solve equality constrained convex optimization by

– eliminating equality constraints and

– using optimization method for solving unconstrained optimization

• note

F = {x|Ax = b} = {Fz + x0|z ∈ Rn−p}
for some F ∈ Rn×(n−p) where R(F ) = N (A)

• thus original problem equivalent to

minimize f(Fz + x0)

• if z∗ is optimal solution, x∗ = Fz∗ + x0

• optimal dual can be retrieved by

ν
∗
= −(AA

T
)
−1
A∇f(x∗

)
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Solving dual problems

• Lagrange dual function of equality constrained problem

g(ν) = inf
x∈D

(
f(x) + ν

T
(Ax− b)

)
= − b

T
ν − sup

x∈D

(
(−AT

ν)
T
x− f(x)

)
= −bTν − f

∗
(−AT

ν)

• dual problem

maximize −bTν − f∗(−ATν)

• by assumption, strong duality holds, hence if ν∗ is dual optimum

g(ν
∗
) = p

∗

• if dual objective is twice-differentiable, can solve dual problem using unconstrained

minimization methods

• primal optimum can be retrieved using method on page 595)
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Newton’s method with equality constraints

• finally discuss Newton’s method which directly handles equality constraints

– similar to Newton’s method for unconstrained minimization

– initial point, however, should be feasible, i.e., x(0) ∈ F and Ax(0) = b

– Newton step tailored for equality constrained problem
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Newton step via second-order approximation

• solve original problem approximately by solving

minimize f̂(x+ ∆x)

= f(x) + ∇f(x)T∆x+ (1/2)∆xT∇2f(x)∆x

subject to A(x+ ∆x) = b

where x ∈ F

• Newton step for equality constrained minimization problem, defined by solution of KKT

system for above convex quadratic minimization problem[
∇2f(x) AT

A 0

] [
∆xnt

w

]
=

[
−∇f(x)

0

]
only when KKT system is nonsingular
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Newton step via solving linearized KKT optimality conditions

• recall KKT optimality conditions for equality constrained convex optimization problem

Ax
∗
= b & ∇f(x∗

) + A
T
ν
∗
= 0

• linearize KKT conditions

A(x+ ∆x) = b & ∇f(x) + ∇2
f(x)∆x+ A

T
w = 0

⇔ A∆x = 0 & ∇2
f(x)∆x+ A

T
w = −∇f(x)

where x ∈ F

• Newton step defined by above equations is equivalent to that obtained by second-order

approximation
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Newton decrement for equality constrained minimization

• Newton descrement for equality constrained problem is defined by

λ(x) =
(
∆xnt∇2

f(x)∆xnt

)1/2

• same expression as that for unconstrained minimization, but is different since

Newton step ∆xnt is different from that for unconstrained minimization, i.e.,

∆xnt ̸= −∇2f(x)−1∇f(x) (refer to Definition 210)

• however, as before,

f(x) − inf
∆x∈Rn

{f̂(x+ ∆x)|A(x+ ∆x) = b} = λ(x)
2
/2

and (
d

dt
f(x+ t∆xnt)

)∣∣∣∣
t=0

= ∇f(x)T∆xnt = −λ(x)2 < 0
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Feasible Newton’s method for equality constrained minimization

Algorithm 5. [feasible Newton’s method for equality constrained minimization]

Require: f , initial point x ∈ dom f with Ax = b, tolerance ϵ > 0

loop

computer Newton step and descrement ∆xnt(x) & λ(x)

stopping criterion - quit if λ(x)2/2 < ϵ

do line search on f to choose t > 0

update - x := x+ t∆xnt

end loop

• Algorithm 5

– assumes KKT matrix is nonsingular for every step

– is feasible descent method since all iterates are feasible with f(x(k+1)) < f(x(k))
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Assumptions for convergence analysis of feasible Newton’s method
for equality constrained minimization

• feasibility of initial point - x(0) ∈ dom f & Ax(0) = b

• sublevel set S = {x ∈ dom f |f(x) ≤ f(x(0)), Ax = b} is closed

• boundedness of Hessian on S

(∃M > 0) (∀x ∈ S)
(
∇2
f(x) ⪯ MI

)
• boundedness of KKT matrix on S - corresponds to strong convexity assumption in

unconstrained minimization

(∃K > 0) (∀x ∈ S)

(∥∥∥∥∥
[

∇2f(x) AT

A 0

]−1
∥∥∥∥∥
2

≤ K

)

• Lipschitz continuity of Hessian on S

(∃L > 0) (∀x, y ∈ S)
(∥∥∥∇2

f(x) − ∇2
f(y)

∥∥∥
2
≤ L∥x− y∥2

)
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Convergence analysis of feasible Newton’s method for equality
constrained minimization

• convergence analysis of Newton’s method for equality constrained minimization can be

done by analyzing unconstrained minimization after eliminating equality constraints

• thus, yield exactly same results as for unconstrained minimization (Theorem 95) (with

different parameter values), i.e.,

– consists of damped Newton phase and quadratic convergence phase

– # iterations required to achieve f(x(k)) − p∗ ≤ ϵ is(
f(x

(0)
) − p

∗
)
/γ + log2 log2(ϵ0/ϵ)

• for # iterations required to achieve f(x(k)) − p∗ ≤ ϵ for self-concordant functions is

also same as for unconstrained minimization (Theorem 97)(
f(x

(0)
) − p

∗
)
/γ + log2 log2(1/ϵ)

where γ = αβ(1 − 2α)2/(20 − 8α)
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Newton step at infeasible points

• only assume that x ∈ dom f (hence, can be infeasible)

• (as before) linearize KKT conditions

A(x+ ∆xnt) = b & ∇f(x) + ∇2
f(x)∆xnt + A

T
w = 0

⇔ A∆xnt = b− Ax & ∇2
f(x)∆xnt + A

T
w = −∇f(x)

⇔
[

∇2f(x) AT

A 0

] [
∆xnt

w

]
= −

[
∇f(x)
Ax− b

]

• same as feasible Newton step except second component on RHS of KKT system
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Interpretation as primal-dual Newton step

• update both primal and dual variables x and ν

• define r : Rn → Rp → Rn × Rp by

r(x, ν) = (rdual(x, ν), rpri(x, ν))

where

dual residual − rdual(x, ν) = ∇f(x) + A
T
ν

primal residual − rpri(x, ν) = Ax− b
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Equivalence of infeasible Newton step to primal-dual Newton step

• linearize r to obtain primal-dual Newton step, i.e.

r(x, ν) +Dx,νr(x, ν)

[
∆xpd

∆νpd

]
= 0

⇔
[

∇2f(x) AT

A 0

] [
∆xpd

∆νpd

]
= −

[
∇f(x) + ATν

Ax− b

]

• letting ν+ = ν + ∆νpd gives[
∇2f(x) AT

A 0

] [
∆xpd

ν+

]
= −

[
∇f(x)
Ax− b

]

– equivalent to infeasible Newton step

– reveals that current value of dual variable not needed

Searching for Universal Truths - Convex Optimization - Equality Constrained Minimization 675



Sunghee Yun August 4, 2025

Residual norm reduction property

• infeasible Newton step is not descent direction (unlike feasible Newton step) since(
d

dt
f(x+ t∆xpd)

)∣∣∣∣
t=0

= ∇f(x)T∆xpd

= −∆x
T
pd

(
∇2
f(x)∆xpd + A

T
w
)

= − ∆x
T
pd∇

2
f(x)∆xpd + (Ax− b)

T
w

which is not necessarily negative

• however, norm of residual decreases in infeasible Newton direction(
d

dx
∥r(y + t∆ypd)∥2

2

)∣∣∣∣
t=0

= −2r(y)
T
r(y) = −2∥r(y)∥2

2

⇔
(
d

dx
∥r(y + t∆ypd)∥2

)∣∣∣∣
t=0

=
−2∥r(y)∥2

2

2∥r(y)∥2

= −∥r(y)∥2

where y = (x, ν) and ∆ypd = (∆xpd,∆νpd)

• can use r(x(k), ν(k)) to measure optimization progress for infeasible Newton’s method
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Full and damped step feasibility property

• assume step length is t at some iteration, then

rpri(x
+
, ν

+
) = Ax

+ − b = A(x+ t∆xpd) − b = (1 − t)rpri(x, ν)

• hence l > k

r
(l)

=

(
l−1∏
i=k

(1 − t
(i)
)

)
r
(k)

– primal residual reduced by 1 − t(k) at step k

– Newton step becomes feasible step once full step length (t = 1) taken
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Infeasible Newton’s method for equality constrained minimization

Algorithm 6. [infeasible Newton’s method for equality constrained minimization]

Require: f , initial point x ∈ dom f & ν, tolerance ϵpri > 0 & ϵdual > 0

repeat

computer Newton step and descrement ∆xpd(x) & ∆νpd(x),

do line search on r(x, ν) to choose t > 0

update - x := x+ t∆xpd & ν := ν + t∆νpd
until ∥rdual(x, ν)∥ ≤ ϵdual & ∥Ax− b∥ ≤ ϵpri

• note similarity and difference of Algorithm 6 & Algorithm 5

– line search done not on f , but on primal-dual residuals r(x, ν)

– stopping criteria depends on r(x, ν), not on Newton decrementa λ(x)2

– primal and dual feasibility checked separately - here norm in ∥Ax − b∥ can be any

norm, e.g., ∥ · ∥0, ∥ · ∥1, ∥ · ∥2, ∥ · ∥∞, depending on specific application
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Line search methods for infeasible Newton’s method

• line search methods for infeasible Newton’s method, i.e., Algorithm 1 & Algorithm 2

same with f replaced by ∥r(x, ν)∥2,

• but they have special forms (of course) - refer to below special case descriptions

Algorithm 7. [exact line search for infeasible Newton’s method]

t = argmin
s>0

∥r(x+ s∆xpd, ν + s∆νpd)∥2

Algorithm 8. [backtracking line search for infeasible Newton’s method]

Require: ∆x, ∆ν, α ∈ (0, 0.5), β ∈ (0, 1)

t := 1

while ∥r(x+ t∆xpd, ν + t∆νpd)∥2 > (1 − αt)∥r(x, ν)∥2 do

t := βt

end while
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Pros and cons of infeasible Newton’s method

• pros

– do not need to find feasible point separately, e.g.

- “minimize − log(Ax) + bTx”

can be solved by converting to

- “minimize − log(y) + bTx s.t. y = Ax”

and solved by infeasible Newton’s method

– if step length is one at any iteration, following steps coincides with feasible Newton’s

method - could switch to feasible Newton’s method

• cons

– exists no clear way to detect feasibility - primal residual decreases slowly (phase I

method in interior point method resolves this problem)

– convergence of infeasible Newton’s method can be very slow (until feasibility is

achieved0
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Assumptions for convergence analysis of infeasible Newton’s method
for equality constrained minimization

• sublevel set S =
{
(x, ν) ∈ dom f × Rm

∣∣∣∥r(x, ν)∥2 ≤ ∥r(x(0), ν(0))∥2

}
is

closed, which always holds because ∥r∥2 is closed

• boundedness of KKT matrix on S

(∃K > 0) (∀x ∈ S)

(∥∥∥Dr(x, ν)−1
∥∥∥
2
=

∥∥∥∥∥
[

∇2f(x) AT

A 0

]−1
∥∥∥∥∥
2

≤ K

)

• Lipschitz continuity of Hessian on S

(∃L > 0) (∀(x, ν), (y, µ) ∈ S) (∥Dr(x, ν) −Dr(y, µ)∥2 ≤ L∥(x, ν) − (y, µ)∥2)

• above assumptions imply {x ∈ dom f |Ax = b} ̸= ∅ and exist optimal point (x∗, ν∗)
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Convergence analysis of infeasible Newton’s method for equality
constrained minimization

• very simliar to that for Newton’s method for unconstrained minimization

• consist of two phases - like unconstrained minimization or infeasible Newton’s method

(refer to Theorem 95 or page 672)

– damped Newton phase - if ∥r(x(k), ν(k))∥2 > 1/(K2L)

∥r(x(k+1)
, ν

(k+1)
)∥2 ≤ ∥r(x(k)

, ν
(k)

)∥2 − αβ/K
2
L

– quadratic convergence damped Newton phase - if ∥r(x(k), ν(k))∥2 ≤ 1/(K2L)(
K

2
L∥r(x(k)

, ν
(k)

)∥2/2
)

≤
(
K

2
L∥r(x(k−1)

, ν
(k−1)

)∥2/2
)2

≤ · · · ≤ (1/2)
2k

• # iterations of infeasible Newton’s method required to satisfy ∥r(x(k), ν(k))∥2 ≤ ϵ

∥r(x(0)
, ν

(0)
)∥/(αβ/K2

L) + log2 log2(ϵ0/ϵ) where ϵ0 = 2/(K
2
L)

• (x(k), ν(k)) converges to (x∗, ν∗)
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Interior-point methods

• want to solve inequality constrained minimization problem

• interior-point methods solve convex optimization problem (Definition 179) or KKT

optimality conditions (Definition 199) by

– applying Newton’s method to sequence of

- equality constrained problems or

- modified versions of KKT optimality conditions

• discuss interior-point barrier method & interior-point primal-dual method

• hierarchy of convex optimization algorithms

– simplest - linear equality constrained quadratic program - can solve analytically

– Newton’s method - solve linear equality constrained convex optimization problem by

solving sequence of linear equality constrained quadratic programs

– interior-point methods - solve linear equality & convex inequality constrained problem

by solving sequence of lienar equality constrained convex optimization problem
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Indicator function barriers

• approxmiate general convex inequality constrained problem as linear equality constrained

problem

• make inequality constraints implicit in objective function

minimize f(x) +
∑
I−(q(x))

subject to Ax = b

where I− : R → R is indicator function for nonpositive real numbers, i.e.

I−(u) =

{
0 u ≤ 0

∞ u > 0
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Logarithmic barriers

• approximate indicator function by logarithmic function

Î− = −(1/t) log(−u) dom Î− = −R++

for t > 0 to obtain

minimize f(x) +
∑

−(1/t) log(−q(x))
subject to Ax = b

• objective function is convex due to composition rule for convexity preservation

(page 503), and differentiable

• hence, can use Newton’s method to solve it

• function ϕ defined by

ϕ(x) = −
∑

log(−q(x))
with domϕ{x ∈ X|q(x) ≺ 0} called logarithmic barrier or log barrier

• solve sequence of log barrier problems as we increase t
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Central path

• optimization problem

minimize tf(x) + ϕ(x)

subject to Ax = b

with t > 0 where

ϕ(x) = −
∑

log(−q(x))

• solution of above problem, called central point, denoted by x∗(t), set of central points,

called central path

• intuition says x∗(t) will converge to x∗ as t → ∞
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• KKT conditions imply

Ax
∗
(t) = b q(x

∗
(t)) ≺ 0

and exists ν∗(t) such that

0 = t∇f(x∗
(t)) + ∇ϕ(x∗

(t)) + tA
T
ν
∗
(t)

= t∇f(x∗
(t)) −

∑ 1

qi(x∗(t))
∇qi(x∗

(t)) + tA
T
ν
∗
(t)

• thus if we let λ∗(t) = −1/tqi(x
∗(t)), x∗(t) minimizes

L(x, λ
∗
(t), ν

∗
(t)) = f(x) + λ

∗
(t)

T
q(x) + ν

∗
(t)

T
(Ax− b)

where L is Lagrangian of original problem in Definition 179
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• hence, dual function g(λ∗(t), ν∗(t)) is finite and

g(λ
∗
(t), ν

∗
(t)) = inf

x∈X
L(x, λ

∗
(t), ν

∗
(t)) = L(x

∗
(t), λ

∗
(t), ν

∗
(t))

= f(x
∗
(t)) + λ

∗
(t)

T
q(x

∗
(t)) + ν

∗
(t)

T
(Ax

∗
(t) − b) = f(x

∗
(t)) −m/t

and

f(x
∗
(t)) − p

∗ ≤ f(x
∗
(t)) − g(λ

∗
(t), ν

∗
(t)) = m/t

that is,

x∗(t) is no more than m/t-suboptimal

which confirms out intuition that x∗(t) → x∗ as t → ∞
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Central path interpretation via KKT conditions

• previous arguments imply that x is central point, i.e., x = x∗(t) for some t > 0 if

and only if exist λ and ν such that

Ax = b q(x) ⪯ 0 - primal feasibility

λ ⪰ 0 - dual feasibility

−λiTqi(x) = 1/t - complementary 1/t-slackness

∇xL(x, λ, ν) = 0 - vanishing gradient of Lagrangian

called centrality conditions

• only difference between centrality conditions and KKT conditions in Definition 199 is

complementary 1/t-slackness

– note that I’ve just made up term “complementary 1/t-slackness” - you won’t be able

to find terminology in any literature

• for large t, λ∗(t) & ν∗(t) very closely satisfy (true) complementary slackness
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Central path interpretation via force field

• assume exist no equality constraints

• interpret ϕ as potential energy by some force field, e.g., electrical field and tf as

potential energy by some other force field, e.g., gravity

• then

– force by first force field (in n-dimensional space), which we call barrier force, is

−∇ϕ(x) =
∑ 1

qi(x)
∇qi(x)

– force by second force field, which we call objective force, is

−∇(tf(x)) = −t∇f(x)

• x∗(t) is point where two forces exactly balance each other

– as x approach boundary, barrier force pushes x harder from barriers,

– as t increases, objective force pushes x harder to point where objective potential

energy is minimized
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Equality constrained problem using log barrier

• central point x∗(t) is m/t-suboptimal point guaranteed by optimality certificate

g(λ∗(t), ν∗(t))

• hence solving below problem provides solution with ϵ-suboptimality

minimize (m/ϵ)f(x) + ϕ(x)

subject to Ax = b

• but works only for small problems since for large m/ϵ, objective function ill behaves
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Barrier methods

Algorithm 9. [barrier method]

Require: strictly feasible x, t > 0, µ > 1, tolerance ϵ > 0

repeat

centering step - find x∗(t) by minimizing tf + ϕ subject to Ax = b starting at x

(optionally) compute λ∗(t) & ν∗(t)

stopping criterion - quit if m/t < ϵ

increase t - t := µt

update x - x := x∗(t)

until

• barrier method, also called path-following method, solves sequence of equality

constrained optimization problem with log barrier

– when first proposed by Fiacco and McCormick in 1960s, it was called sequential

unconstrained minimization technique (SUMT)

• centering step also called outer iteration

• each iteration of algorithm used for equality constrained problem, called inner iteration
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Accuracy in centering in barrier method

• accuracy of centering

– only goal of centering is getting close to x∗, hence exact calculation of x∗(t) not

critical as long as approximates of x∗(t) go to x∗

– while cannot calculate g(λ, ν) for this case, below provides dual feasible point when

Newton step ∆xnt for optimization problem on page 687 is small, i.e., for nearly

centered

λ̃i = −
1

tqi(x)

(
1 −

∇qi(x)T∆xnt

qi(x)

)
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Choices of parameters of barrier method

• choice of µ

– µ determines aggressiveness of t-update

- larger µ, less outer iterations, but more inner iterations

- smaller µ, less outer iterations, but more inner iterations

– values from 10 to 20 for µ seem to work well

• candidates for choice of initial t - choose t(0) such that

m/t
(0) ≈ f(x

(0)
) − p

∗

or make central path condition on page 687 maximally satisfied

t
(0)

= arginf
t

inf
ν̃

∥∥∥t∇f(x(0)
) + ∇ϕ(x(0)

) + A
T
ν̃
∥∥∥
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Convergence analysis of barrier method

• assuming tf + ϕ can be minimized by Newton’s method for t(0), µt(0), µ2t(0), . . .

• at k’th step, duality gap achieved is m/µkt(0)

• # centering steps required to achieve accuracy of ϵ is
log
(
m/ϵt(0)

)
log µ


plus one (initial centering step)

• for convergence of centering

– for feasible centering problem, tf + ϕ should satisfy conditions on page 671, i.e.,

initial sublevel set is closed, associated inverse KKT matrix is bounded & Hessian

satisfies Lipschitz condition

– for infeasible centering problem, tf + ϕ should satisfy conditions on page 681
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Primal-dual & barrier interior-point methods

• in primal-dual interior-point methods

– both primal and dual variables are updated at each iteration

– search directions are obtained from Newton’s method, applied to modified KKT

equations, i.e., optimality conditions for logarithmic barrier centering problem

– primal-dual search directions are similar to, but not quite the same as, search

directions arising in barrier methods

– primal and dual iterates are not necessarily feasible

• primal-dual interior-point methods

– often more efficient than barrier methods especially when high accuracy is required -

can exhibit better than linear convergence

– (customized versions) outperform barrier method for several basic problems, such as,

LP, QP, SOCP, GP, SDP

– can work for feasible, but not strictly feasible problems

– still active research topic, but show great promise
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Modified KKT conditions and central points

• modified KKT conditions (for convex optimization in Definition 179) expressed as

rt(x, λ, ν) =

 ∇f(x) +Dq(x)Tλ+ ATν

− diag(λ)f(x) − (1/t)1

Ax− b


where

dual residual − rdual(x, λ, ν) = ∇f(x) +Dq(x)
T
λ+ A

T
ν

centrality residual − rcent(x, λ, ν) = − diag(λ)f(x) − (1/t)1

primal residual − rpri(x, λ, ν) = Ax− b

• if x, λ, ν satisfy rt(x, λ, ν) = 0 (and q(x) ≺ 0), then

– x = x∗(t), λ = λ∗(t), ν = ν∗(t)

– x is primal feasible and λ & ν are dual feasible with duality gap m/t
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Primal-dual search direction

• assume current (primal-dual) point y = (x, λ, ν) and Newton step ∆y =

(∆x,∆ν,∆λ)

• as before, linearize equation to obtain Newton step, i.e.,

rt(y + ∆y) ≈ rt(y) +Drt(y)∆y = 0 ⇔ ∆y = −Drt(y)−1
rt(y)

hence ∇2f(x) +
∑
λi∇2qi(x) Dq(x)T AT

− diag(λ)Df(x) − diag(f(x)) 0

A 0 0

 ∆x

∆λ

∆ν

 = −

 rdual
rcent
rpri



• above equation determines primal-dual search direction ∆ypd = (∆xpd,∆λpd,∆νpd)
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Surrogate duality gap

• iterates x(k), λ(k), and ν(k) of primal-dual interior-point method are not necessarily

feasible

• hence, cannot easily evaluate duality gap η(k) as for barrier method

• define surrogate duality gap for q(x) ≺ 0 and λ ⪰ 0 as

η̂(x, λ) = −q(x)Tλ

• η̂ would be duality gap if x were primal feasible and λ & ν were dual feasible

• value t corresponding to surrogate duality gap η̂ is m/η̂
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Primal-dual interior-point method

Algorithm 10. [primal-dual interior-point method]

Require: initial point x with q(x) ≺ 0, λ ≻ 0, µ > 1, ϵpri > 0, ϵdual > 0, ϵ > 0

repeat

set t := µm/η̂

computer primal-dual search direction ∆ypd = (∆xpd,∆λpd,∆νpd)

do line search to choose s > 0

update - x := x+ s∆xpd, λ := λ+ s∆νpd, ν := ν + s∆νpd
until ∥rpri(x, λ, ν)∥2 ≤ ϵpri, ∥rdual(x, λ, ν)∥2 ≤ ϵdual, η̂ ≤ ϵ

• common to choose small ϵpri, ϵdual, & ϵ since primal-dual method often shows faster

than linear convergence
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Line search for primal-dual interior-point method

• liner search is standard backtracking line search on r(x, λ, ν) similar to that in

Algorithm 7 except making sure that q(x) ≺ 0 and λ ≻ 0

• note initial s in Algorithm 11 is largest s that makes λ+ s∆λpd positive

Algorithm 11. [backtracking line search for primal-dual interior-point method]

Require: ∆xpd, ∆λpd, ∆νpd, α ∈ (0.01, 0.1), β ∈ (0.3, 0.8)

s := 0.99 sup{s ∈ [0, 1]|λ + s∆λ ⪰ 0} = 0.99min{1,min{−λi/∆λi|∆λi <
0}}
while q(x+ s∆xpd) ̸≺ 0 do

t := βt

end while

while ∥r(x+ s∆xpd, λ+ s∆λpd, ν + s∆νpd)∥2 > (1 − αs)∥r(x, λ, ν)∥2 do

t := βt

end while
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Selected proofs

• Proof 1. (Proof for “relation among coset indices” on page 75)

Let {h1, . . . , hn} and {k1, . . . , km} be coset representations of H in G and K in

H respectively. Then n = (G : H) and m = (H : K). Note that
⋃
i,j hikjK =⋃

i hiH = G, and if hikjK = hkklK for some 1 ≤ i, k ≤ n and 1 ≤ j, k ≤ m,

hikjKH = hkklKH ⇔ hikjH = hkklH ⇔ hiH = hjH ⇔ hi = hj, thus

kjK = klK, hence kj = kl. Thus {hikj|1 ≤ i ≤ n, 1 ≤ j ≤ m} is cosets

representations of K in G, therefore (G : K) = mn = (G : H)(H : K).

• Proof 2. (Proof for “normality and commutativity of commutator subgroups” on

page 89)

– For a, x, y ∈ G,

axyx
−1
y
−1

= ax(a
−1
x
−1
xa)yx

−1
y
−1

(a
−1
a)

= (axa
−1
x
−1

)(x(ay)x
−1

(ay)
−1

)a
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and

xyx
−1
y
−1
a = (aa

−1
)xyx

−1
(ay

−1
ya

−1
)y

−1
a

= a((a
−1
x)y(a

−1
x)

−1
y
−1

)(ya
−1
y
−1
a),

hence commutator subgroup of G propagate every element of G from fron to back

and vice versa. Therefore for every a ∈ G, aGC = GCa.

– For x, y ∈ G, xGCyGC = xyGC = GCxy = (GCx)(GCy), hence G/GC is

commutative.

– For a homeomorphism of G, f , into a commutative group, and x, y ∈ G,

f(xyx
−1
y
−1

) = f(x)f(y)f(x
−1

)f(y
−1

) = f(x)f(x
−1

)f(y)f(y
−1

) = e

thus xyx−1y−1 ∈ Ker f , hence GC ⊂ Ker f .

• Proof 3. (Proof for “set of functions into ring is ring” on page 111)

– First, we show that the mapping addition defines a commutative additive group in

Map(S,A). The addition is associative because A is a ring, hence defines an
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additive (abelian) group, thus, monoids (Definition 8 & Definition 9), i.e.,

(∀f, g, h ∈ Map(S,A))

(∀x ∈ S) ( ((f + g) + h)(x) = (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x)) = (f + (g + h))(x))

⇒ (f + g) + h = f + (g + h).

Thus, the mapping addition defines an additive monoid in Map(S,A) with the zero

mapping whose value is the additive unit element of A as the additive unit element

of Map(S,A) (Definition 8). Now for every f ∈ R, a mapping g ∈ R defined by

x 7→ −f(x) satisfies f + g = g + f = 0, hence is the inverse of f . Therefore

the additive monoid is a group (Definition 9). We further note that the addition is

commutative because the additive group of A is abelian (Definition 40), i.e.,

(∀f, g ∈ S)

(∀x ∈ M) ( (g + f)(x) = g(x) + f(x) = f(x) + g(x) = (f + g)(x))

⇒ f + g = g + f.
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Therefore, the mapping addition defines a commutative additive group in End(M).

– The mapping multiplication is associative because A is ring, hence defines a

multiplicative monoid, i.e.,

(∀f, g, h ∈ Map(S,A))

(∀x ∈ S) ( ((fg)h)(x) = (fg)(x)h(x) = (f(x)g(x))h(x)

= f(x)(g(x)h(x)) = f(x)(gh)(x) = (f(gh))(x))

⇒ (fg)h = f(gh).

Thus, the mapping multiplication defines a multiplicative monoid in Map(S,A) with

the mapping whose value is the multiplicative unit element of A as the multiplicative

unit element (Definition 8).

– Now we show that the multiplication is distributive over addition in Map(S,A).

Similary this is due to that the multiplication is distributive over addition in A. Note
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that

(∀f, g, h ∈ Map(S,A))

(∀x ∈ S) ( (f(g + h))(x) = f(x)(g + h)(x) = f(x)(g(x) + h(x))

= f(x)g(x) + f(x)h(x) = (fg)(x) + (fh)(x))

⇒ f(g + h) = fg + fh.

We can similarly show that

(∀f, g, h ∈ Map(S,A)) ((f + g)h = fh+ gh) .

Therefore Map(S,A) is is ring (Definition 40).

• Proof 4. (Proof for “set of group endomorphisms is ring” on page 111)

– First, we show that the addition defines a commutative additive group in End(M).

The addition is associative because M is group, hence, monoids (Definition 8 &
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Definition 9), i.e.,

(∀f, g, h ∈ End(M))

(∀x ∈ M) ( ((f + g) + h)(x) = (f(x) + g(x)) + h(x)

= f(x) + (g(x) + h(x)) = (f + (g + h))(x))

⇒ (f + g) + h = f + (g + h).

Thus, the addition defines an additive monoid in End(M) with the zero mapping

whose values is the unit element of M as the additive unit element (Definition 8).

Now for every f ∈ End(M), a mapping g ∈ End(M) defined by x 7→ −f(x)
satisfies f + g = g + f = 0, hence is the inverse of f . Therefore the addition

defines the additive group in End(M) (Definition 9). We further note that the

addition is commutative because M is abelian, i.e.,

(∀f, g ∈ End(M)) (∀x ∈ M)

((g + f)(x) = g(x) + f(x) = f(x) + g(x) = (f + g)(x)) .
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Therefore, the addition defines a commutative additive group in End(M).

– The multiplication is associative because the mapping composition is an associative

operation, i.e., (∀f, g, h ∈ End(M)) ((f ◦ g) ◦ h = f ◦ (g ◦ h)) , hence, the

mapping composition defines a multiplicative monoid in End(M) with the identity

mapping as the multiplicative unit element (Definition 8).

– Now we show that the multiplication is distributive over addition. Note that

(∀f, g, h ∈ End(M))

(∀x ∈ M) ( (f ◦ (g + h))(x) = f(g(x) + h(x))

= (f ◦ g)(x) + (f ◦ h)(x))

⇒ f ◦ (g + h) = (f ◦ g) + (f ◦ h).

We can similarly show that

(∀f, g, h ∈ End(M)) ((f + g) ◦ h = (f ◦ h) + (g ◦ h)) .

Therefore for abelian group M , set End(M) of group homeomorphisms of M into

itself is ring (Definition 40).
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• Proof 5. (Proof for “nonzero ideals of integers are principal” on page 117)

Suppose a is a nonzero ideal of Z. Because if negative integer, n, is in a, −n is also

in a because a is an additive group in the ring, Z. Thus, a has at least one positive

integer. By Principle 2, there exists the smallest positive integer in a. Let n be that

integer. Letm ∈ a. By Theorem 29, there exist q, r ∈ Z such thatm = qn+ r with

0 ≤ r < n. Since by the definition of ideals of rings (Definition 49) a is an additive

group in Z, hence m − qn = r is also in a, thus r should be 0 because we assume

n is the smallest positive integer in a. Thus a = {qn|q ∈ Z} = nZ. Therefore the

ideal is either {0} or nZ for some n > 0. Both {0} and nZ are ideal.

• Proof 6. (Proof for “ideal generated by elements of ring” on page 119)

For all x ∈ (a1, . . . , an), and y ∈ A yx = y (
∑
xiai) =

∑
(yxi)ai for some

⟨xi⟩ni=1 ⊂ A, hence yx ∈ A, and (a1, . . . , an) is additive group, thus is ideal of A,

hence ⋂
a:ideal containing a1,...,an

a ⊂ (a1, . . . , an)

Conversely, if a contains a1, . . . , an, Aai ⊂ a, hence for every sequence, ⟨xi⟩ni=1 ⊂ A,∑
xiai ⊂ a because a is additive subgroup of A, thus (a1, . . . , an) is contained in
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every ideal containing a1, . . . , an, hence

(a1, . . . , an) ⊂
⋂

a:ideal containing a1,...,an

a

• Proof 7. (Proof for “kernel of ring-homeomorphism is ideal” on page 121)

Let Ker f be the kernel of a ring homeomorphism f : A → B. Then Definition 56

implies

(∀a, b ∈ Ker f) (f(a+ b) = f(a) + f(b) = 0 + 0 = 0 ⇒ a+ b ∈ Ker f)

hence, Ker f is closed under addition. Also Definition 56 implies

(∀a ∈ Ker f)

(f(−a) = f((−1)a) = f(−1)f(a) = f(−1)0 = 0 ⇒ −a ∈ Ker f)

hence, every element of Ker f has its inverse. Also 0 ∈ Ker f because f(0) = 0 by

Definition 56. Thus, Ker f is a subgroup of A as additive group. Definition 56 also
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implies

(∀a ∈ A, x ∈ Ker f)

(f(ax) = f(a)f(x) = f(a)0 = 0 & f(xa) = f(x)f(a) = 0f(a) = 0)

hence, Ker f is a two-side ideal, i.e., an ideal.

• Proof 8. (Proof for “image of ring-homeomorphism is subring” on page 125)

Let f : A → B be a ring-homeomorphism for two rings A and B.

– Then for any z, w ∈ f(A), there exist x, y ∈ A such that f(x) = z and

f(y) = w, hence Definition 56 implies

z + w = f(x) + f(y) = f(x+ y) ∈ f(A)

because x + y ∈ A, hence f(A) is closed under addition. Because 0 ∈ A,

Definition 56 implies 0 = f(0) ∈ f(A), hence f(A) contains the additive unit

element. Also, for every z ∈ f(A), there exist x ∈ A such that f(x) = z, but

there exists −x ∈ A because a ring is a commutative group with respect to addition
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(Definition 40) thus, f(−x) ∈ f(A), hence Definition 56 implies

f(−x) + z = f(−x) + f(x) = f(−x+ x) = f(0) = 0

and the additive inverse of z, which is f(−x), is in f(A). Therefore f(A) is

an additive group. Lastly for any z, w ∈ f(A), there exist x, y ∈ A such that

f(x) = z and f(y) = w, hence Definition 40 implies

z + w = f(x) + f(y) = f(x+ y) = f(y + x) = f(y) + f(x) = w + z,

thus,

f(A) ⊂ B is a commutative group with respect to addition. (1)

– Then for any z, w ∈ f(A), there exist x, y ∈ A such that f(x) = z and

f(y) = w, hence Definition 56 implies

zw = f(x)f(y) = f(xy) ∈ f(A)

because xy ∈ A, hence f(A) is closed under multiplication. Because 1 ∈ A,

Definition 56 implies 1 = f(1) ∈ f(A), hence f(A) contains the multiplicative
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unit element, thus,

f(A) ⊂ B is a monoid with respect to multiplication. (2)

Therefore f(A) ⊂ B is a subring of B by (1) and (2).

• Proof 9. (Proof for “algebraicness of smallest subfields” on page 161)

Proposition 25 implies that k(α1) = k[α1] and [k(α1) : k] = deg Irr(α1, k,X).

Because α2 is algebraic over k, hence algebraic over k(α1) a fortiori, thus, the same

proposition implies

k(α1, α2) = (k(α1))[α2] = (k[α1])[α2] = k[α1, α2]

and

[k(α1, α2) : k(α1)] = deg Irr(α2, k(α1), X)

hence Proposition 23 implies

[k(α1, α2) : k] = [k(α1, α2) : k(α1)][k(α1) : k]

= deg Irr(α1, k,X) deg Irr(α2, k(α1), X).
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Using the mathematical induction, it is straightforward to show that

k(α1, . . . , αn) = k[α1, . . . , αn]

and

[k(α1, . . . , αn) : k] = deg Irr(α1, k,X) deg Irr(α2, k(α1), X)

· · · deg Irr(αn, k(α1, . . . , αn−1), X),

thus Proposition 22 implies that k(α1, . . . , αn) is finitely algebraic over k.

• Proof 10. (Proof for “finite generation of compositum” on page 164)

First, it is obvious that E = k(α1, . . . , αn) ⊂ F (α1, . . . , αn) and

F ⊂ F (α1, . . . , αn), hence EF ⊂ F (α1, . . . , αn) because EF is defined to

be the smallest subfield that contains both E and F . Now every subfield

containing both E and F contains all f(α1, . . . , αn) where f ∈ F [X], hence all

f(α1, . . . , αn)/g(α1, . . . , αn) where f, g ∈ F [X] and g(α1, . . . , αn) ̸= 0. Thus,

F (α1, . . . , αn) ⊂ EF again by definition. Therefore EF = F (α1, . . . , αn).
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• Proof 11. (Proof for “existence of algebraically closed algebraic extensions” on

page 170)

Theorem 33 implies there exists an algebraically closed extension of k. Let E be such

one. Let K be union of all algebraic extensions of k contained in E, then K is

algebraic over k. Since k is algebraic over itself, K is not empty. Let f ∈ K[X] with

deg f ≥ 1. If α is a root of f , α ∈ E. Since K(α) is algebraic over K and K is

algebraic over k, K(α) is algebraic over k by Proposition 27. Therefore K(α) ⊂ K

and α ∈ K. Thus, K is algebraically closed algebraic extension of k.

• Proof 12. (Proof for “theorem - Galois subgroups associated with intermediate fields”

on page 191)

Suppsoe α ∈ KG and let σ : k(α) → Ka be an embedding inducing the identity

on k. If we let τ : K → Ka extend σ, τ is automorphism by normality of K/k

(Definition 106), hence τ ∈ G, thus τ fixed α, which means σ is the identity, which is

the only embedding extension of the identity embedding of k onto itself to k(α), thus,

by Definition 107,

[k(α) : k]s = 1.

Since K is separable over k, α is separable over k (by Theorem 42), and k(α) is
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separable over k (by Definition 109), thus [k(α) : k] = [k(α) : k]s = 1, hence

k(α) = k, thus α ∈ k, hence

K
G ⊂ k.

Since by definition, k ⊂ KG, we have KG = k.

Now since K/k is a normal extension, K/F is also a normal extension (by

Theorem 39). Also, since K/k is a separable extension, K/F is also separable

extension (by Theorem 44 and Definition 100). Thus,K/F is Galois (by Definition 119).

Now let F and F ′ be two intermediate fields. Since KG(K/k) = k, we have

KG(K/F ) = F and KG(K/F ′) = F ′, thus if G(K/F ) = G(K/F ′), F = F ′, hence

the map is injective.

• Proof 13. (Proof for “Galois subgroups associated with intermediate fields - 1” on

page 191)

First, K/F1 and K/F2 are Galois extensions by Theorem 51, hence G(K/F1) and

G(K/F2) can be defined. Also, Theorem 39 and Theorem 44 imply that K/F1F2 is

Galois extension, hence G(K/F1F2) can be defined, too.

Every automorphism of G leaving both F1 and F2 leaves F1F2 fixed, hence

G(K/F1)∩G(K/F2) ⊂ G(K/F1F2). Conversely, every automorphism ofG leaving
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F1F2 fxied leaves both F1 and F2 fixed, henceG(K/F1F2) ⊂ G(K/F1)∩G(K/F2).

Now we can do the same thing using rather mathematically rigorous terms. Assume

that σ ∈ G(K/F1) ∩G(K/F2). Then

(∀x ∈ F1, y ∈ F2) (x
σ
= x & y

σ
= y) ,

thus

(∀n,m ∈ N)(
∀x1, . . . , xn, x

′
1, . . . , x

′
m ∈ F1, y1, . . . , yn, y

′
1, . . . , y

′
m ∈ F2

)
((

x1y1 + · · · + xnyn

x′
1y

′
1 + · · · + x′

my
′
m

)σ
=
x1y1 + · · · + xnyn

x′
1y

′
1 + · · · + x′

my
′
m

)
,

hence σ ∈ G(K/F1F2), thus G(K/F1)∩G(K/F2) ⊂∈ G(K/F1F2). Conversely

if σ ∈ G(K/F1F2),

(∀x ∈ F1, y ∈ F2) (x
σ
= x & y

σ
= y) ,

hence σ ∈ G(K/F1)∩G(K/F2), thus G(K/F1)∩G(K/F2) ⊂ G(K/F1F2).
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• Proof 14. (Proof for “Galois subgroups associated with intermediate fields - 3” on

page 192)

First, K/F1 and K/F2 are Galois extensions by Theorem 51, hence G(K/F1) and

G(K/F2) can be defined.

If F1 ⊂ F2, every automorphism leaving F2 fixed leaves F1 fixed, hence it is in

G(K/F1), thus G(K/F2) ⊂ G(K/F1). Conversely, if G(K/F2) ⊂ G(K/F1),

every intermediate field G(K/F1) leaves fixed is left fixed by G(K/F2), hence

F1 ⊂ F2.

Now we can do the same thing using rather mathematically rigorous terms. Assume

F1 ⊂ F2 and that σ ⊂ G(K/F2). Since Theorem 51 implies that

F1 ⊂ F2 = {x ∈ K|(∀σ ∈ G(K/F2))(x
σ
= x)},

hence (∀x ∈ F1) (x
σ = x) , thus σ ∈ G(K/F1), hence

G(K/F2) ⊂ G(K/F1).
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Conversely, assume that G(K/F2) ⊂ G(K/F1). Then

F1 = {x ∈ K|(∀σ ∈ G(K/F1))(x
σ
= x)}

⊂ {x ∈ K|(∀σ ∈ G(K/F2))(x
σ
= x)} = F2

• Proof 15. (Proof for “Bolzano-Weierstrass-implies-seq-compact” on page 291)

if sequence, ⟨xn⟩, has cluster point, x, every ball centered at x contains at one least

point in sequence, hence, can choose subsequence converging to x. conversely, if ⟨xn⟩
has subsequence converging to x, x is cluster point.

• Proof 16. (Proof for “compact-in-metric-implies-seq-compact” on page 293)

for ⟨xn⟩,
〈
An

〉
with Am = ⟨bn⟩∞n=m has finite intersection property because any

finite subcollection {An1
, . . . , Ank

} contains xnk, hence⋂
An ̸= ∅,

thus, there exists x ∈ X contained in every An. x is cluster point because for
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every ϵ > 0 and N ∈ N, then x ∈ AN+1, hence there exists n > N such that xn
contained in ball about x with radius, ϵ. hence it’s sequentially compact.

• Proof 17. (Proof for “restriction-of-continuous-topology-continuous” on page 311)

because for every open set O, g−1(O) ∈ J, A ∩ g−1(O) is open by definition of

inherited topology.

• Proof 18. (Proof for “l-infinity-not-have-natural-representation” on page 358)

C[0, 1] is closed subspace of L∞[0, 1]. define f(x) for x ∈ C[0, 1] such that

f(x) = x(0) ∈ R. f is linear functional because f(αx+ βy) = αx(0) + βy(0) =

αf(x) + β(y). because |f(x)| = |x(0)| ≤ ∥x∥∞, ∥f∥ ≤ 1. for x ∈ C[0, 1] such

that x(t) = 1 for 0 ≤ t ≤ 1, |f(x)| = 1 = ∥x∥∞, hence achieves supremum, thus

∥f∥ = 1.

if we define linear functional p on L∞[0, 1] such that p(x) = f(x), p(x + y) =

x(0) + y(0) = p(x) + p(y) ≤ p(x) + p(y), p(αx) = αx(0) = αp(x), and

f(x) ≤ p(x) for all x, y ∈ L∞[0, 1] and α ≥ 0, and f(s) = p(s) ≤ p(s) for all

s ∈ C[0, 1]. Hence, Hahn-Banach theorem implies, exists F : L∞[0, 1] → R such

that F (x) = f(x) for every x ∈ C[0, 1] and F (x) ≤ f(x) for every x ∈ L∞[0, 1].
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Now assume y ∈ L1[0, 1] such that F (x) =
∫
[0,1]

xy for x ∈ C[0, 1]. If we

define ⟨xn⟩ in C[0, 1] with xn(0) = 1 vanishing outside t = 0 as n → ∞, then∫
[0,1]

xny → 0 as n → ∞, but F (xn) = 1 for all n, hence, contradiction. Therefore

there is not natural representation for F .

• Proof 19. (Proof for “orthonormal-system” on page 383)

Assume ⟨φn⟩ is complete, but not maximal. Then there exists orthonormal system, R,

such that ⟨φn⟩ ⊂ R, but ⟨φn⟩ ≠ R. Then there exists another z ∈ R such that

z ̸∈ ⟨φn⟩. But definition ⟨z, φn⟩ = 0, hence z = 0. But ∥z∥ = 0, hence, cannot be

member of orthonormal system. contraction, hence proved right arrow, i.e., sufficient

condition (of the former for the latter).

Now assume that it is maximal. Assume there exists z ̸= 0 ∈ H such that

⟨z, φn⟩ = 0. Then ⟨φn⟩∞n=0 with φ0 = z/∥z∥ is anoter orthogonal system

containing ⟨φn⟩, hence contradiction, thus proved left arrow, i.e., necessarily condition.

• Proof 20. (Proof for “central limit theorem” on page 469)

Let Zn(t) = tT (Xn−c) for t ∈ Rk and Z(t) = tTY . Then ⟨Zn(t)⟩ are independent
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random variables having same distribution with EZn(t) = tT (EXn − c) = 0 and

VarZn(t) = EZn(t)
2
= t

T
E(Xn − c)(Xn − c)

T
t = t

T
Σt

Then by Theorem 70
∑n

Zi(t)/
√
ntTΣt converges in distribution to standard

normal random variable. Because EZ(t) = 0 and VarZ(t) = tT EY Y Tz =

tTΣt, for t ̸= 0, Z(t)/
√
tTΣt is standard normal random variable. Therefore∑n

Zi(t)/
√
ntTΣt converges in distribution to Z/

√
tTΣt for every t ̸= 0, thus,∑n

Zi(t)/
√
n = tT (

∑n
Xi − nc)/

√
n converges in distribution to Z(t) = tTY

for every t ∈ R. Then Theorem 72 implies (Sn − nc)/
√
n converges in distribution

to Y .

• Proof 21. (Proof for “intersection of convex sets is convex set” on page 482)

Suppose C is a collection of convex sets. Suppose x, y ∈
⋂
C∈C C and 0 < θ < 1.

Then for each C ∈ C and θx + (1 − θ)y ∈ C, hence, θx + (1 − θ)y ∈
⋂
C∈C C,⋂

C∈C C is a convex set.

• Proof 22. (Proof for “theorem of alternative for linear strict generalized inequalities”

on page 492)
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Suppose Ax ≺K b is infeasible. Then {b − Ax|x ∈ Rn} ∩K◦ = ∅. Theorem 77

implies there exist nonzero λ ∈ Rn and c ∈ R such that

(∀x ∈ Rn)
(
λ
T
(b− Ax) ≤ c

)
(3)

and (
∀y ∈ K

◦) (
λ
T
y ≥ c

)
. (4)

The former equation (3) implies λTA = 0 and λTb ≤ c. and the latter

a ⪰K∗ 0. If c > 0, there exists y ∈ K◦ such that λTy ≥ c > 0. Then

λT ((c/2λTy)y) = c/2 < c, but (c/2λTy)y ∈ K◦, hence contradiction. Thus,

c ≤ 0. If λTy < 0 for some y ∈ K◦, then αy ∈ K◦ for any α > 0, thus there exists

z ∈ K◦ which makes λTz arbitrarily large toward −∞. Therefore λTy is nonnegative

for every y ∈ K◦. Then the latter equation (4) implies (∀y ∈ K◦)
(
λTy ≥ 0

)
,

hence λ ∈ K∗ (by Definition 163). Therefore we have

λ ̸= 0, λ ⪰K∗ 0, A
T
λ = 0, λ

T
b ≤ 0.

Conversely, assume that all of above are satisfied. Then for every x ∈ Rn, there exists
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nonzero λ ⪰K∗ 0 such that

λ
T
(Ax) ≥ λ

T
b,

thus Proposition 36 implies Ax ̸≺K b.

• Proof 23. (Proof for “convexity of infimum of convex function” on page 504)

Note

epi inf
y∈C

f(x, y) = {(x, t)|(∀ϵ > 0)(∃y ∈ C)(f(x, y) ≤ t+ ϵ)}

=
⋂
n∈N

{(x, t) |(∃y ∈ C)(f(x, y, t+ 1/n) ∈ epi f)}

=
⋂
n∈N

({(x, t) |(∃y ∈ C)(f(x, y, t) ∈ epi f)} − (0, 1/n))

where {(x, t) |(∃y ∈ C)(f(x, y, t) ∈ epi f)} − (0, 1/n) for each n since epi f is

convex and projection of a convex set is convex. Since the intersection of any collection

of convex sets is convex, epi infy∈C f(x, y) is convex, thus infy∈C f(x, y) is convex

function.
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• Proof 24. (Proof for “Lagrange dual is lower bound for optimal value” on page 543)

For every λ ⪰ 0 and y ∈ F

g(λ, ν) ≤ f(y) + λ
T
q(y) + ν

T
h(y) ≤ f(y) ≤ inf

x∈F
f(x) = p

∗
.

• Proof 25. (Proof for “max-min inequality” on page 583)

For every x ∈ X, y ∈ Y

f(x, y) ≤ sup
x′∈X

f(x
′
, y)

hence for every x ∈ X

inf
y′′∈Y

f(x, y
′′
) ≤ inf

y′∈Y
sup
x′∈X

f(x
′
, y

′
)

i.e., infy′∈Y supx′∈X f(x
′, y′) is upper bound of infy′′∈Y f(x, y

′′), hence

sup
x∈X

inf
y′′∈Y

f(x, y
′′
) ≤ inf

y′∈Y
sup
x′∈X

f(x
′
, y

′
)
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• Proof 26. (Proof for “epigraph of convex optimization is convex” on page 596)

Assume (u1, v1, t1), (u2, v2, t2) ∈ H. Then there exist x1, x2 ∈ D such that

q(x1) ⪯ u1, h(x1) = v1, f(x1) ≤ t1, q(x2) ⪯ u2, h(x2) = v2, and f(x2) ≤ t2.

Then for every 0 ≤ θ ≤ 1

q(θx1 + (1 − θ)x2) ⪯ θq(x1) + (1 − θ)q(x2) = θu1 + (1 − θ)u2

h(θx1 + (1 − θ)x2) = θh(x1) + (1 − θ)h(x2) = θv1 + (1 − θ)v2

f(θx1 + (1 − θ)x2) ⪯ θf(x1) + (1 − θ)f(x2) = θt1 + (1 − θ)t2

thus θ(u1, v1, t1) + (1 − θ)(u2, v2, t2) ∈ H, hence H is a convex set.
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Galois group
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p-group
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a.e.

almost everywhere, 27, 242

a.s.

almost surely, 27
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abelian group, 69

abelian monoid, 68

abelian Galois extensions, 195

abelian group, 69

towers, 86

abelian monoid, 68

absolute moments

random variables, 455
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history, 66

why, 65
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group, 98
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affine dimension, 474
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affine hulls, 474

affine sets, 474

Alexandroff one-point compactification, 345

Alexandroff, Paul

Alexandroff one-point compactification, 345

algebra, 209

generated by, 210

smallest containing subsets, 210

algebra generated by, 210

algebraic

extension

dimension, 157

over field, 154

THE irreducible polynomial, 155

algebraic and finite extensions are distinguished, 166

algebraic closedness

field, 146

algebraic closure, 172

field, 172

algebraic embedding extension

field, 171

algebraic embedding extensions, 171

algebraic extension, 151, 156

field embeddings of, 168

finite, 156

Galois extension, 188

algebraic over field, 154

algebraically closed, 146
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field, 146

algebraicness of finite field extensions, 156

algebraicness of finitely generated subfield by single
element, 160

algebraicness of finitely generated subfields by
multiple elements, 161

algorithms

backtracking line search, 641

backtracking line search for infeasible Newton’s
method, 679

backtracking line search for primal-dual interior-
point method, 703

barrier method, 693

exact line search, 641

exact line search for infeasible Newton’s method,
679

feasible Newton’s method for equality
constrained minimization, 670

gradient descent method, 642

infeasible Newton’s method for equality
constrained minimization, 678

Newton’s method, 645

primal-dual interior-point method, 702

almost everywhere, 27, 242

almost everywhere - a.e., 27

almost surely, 27

alternating group

finite symmetric group, 97

alternating groups, 97

AM-GM inequality, 39
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arbitrary separable field extensions, 180

Artin’s theorem, 193
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group, 68

automorphism

group, 71

monoid, 71

axiom

multiplicative axiom, 213, 214

axiom of choice, 213

axiom of countability

first, 317, 318, 335

second, 317, 318, 320, 334

axioms

axiom of choice, 213

backtracking line search, 641

backtracking line search for infeasible Newton’s
method, 679

backtracking line search for primal-dual interior-
point method, 703

Baire, Ren’e-Louis

Baire category theorem, 300

Baire theorem, 300

Baire theory of category, 299

Banach spaces, 270, 350

isomorphism, 363

weak topologies, 369

Banach, Stefan

Banach spaces, 270, 350
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complete, 270, 350

isomorphism, 363

weak topologies, 369

barrier method, 693

base

topological spaces, 314

bijection

functions, 205

bijective

functions, 205

bijective correspondece

functions, 205

Boolean algebra, 209

Borel σ-algebra, 226

Borel field, 209

Borel functions, 425

Borel sets, 226

Fσ, 227

Fσδ, 227

Gδ, 227

Gδσ, 227

multi-dimensional, 425

Borel, Félix Édouard Justin Émile

σ-algebra, 226

Borel-Cantelli lemmas, 431

Borel-Lebesgue theorem, 296

field, 209

functions, 425

Heine-Borel theorem, 223

sets, 226
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Borel-Cantelli lemmas, 431

first, 431

second, 431

Borel-Lebesgue theorem, 296

boundary

set, 24

butterfly lemma

group, 91

butterfly lemma - Zassenhaus, 91

canonical isomorphisms

group, 82, 83

canonical map

ring, 122

canonical map of ring, 122

canonical maps

group, 76

Cantelli, Francesco Paolo

Borel-Cantelli lemmas, 431

Carathéodory outer measure

for metric space, 422

with respect to function set, 422

Carathéodory theorem, 420

Carathéodory, Constantin

Carathéodory theorem, 420

outer measure, 422

cardinality of algebraic extension of infinite field,
172

cardinality of algebraic extensions of infinite fields,
172
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category theory

Baire category theorem, 300

Baire theorem, 300

Baire theory of category, 299

co-meager, 299

first category, 302

first category or meager, 299

locally compact Hausdorff spaces, 301

meager, 299

nonmeager, 299

nowhere dense, 299

residual, 299

second category everywhere, 301

second category or nonmeager, 299

Cauchy, Augustin-Louis

Cauchy-Buniakowsky-Schwarz inequality

Hilbert spaces, 379

Cauchy-Schwarz inequality, 48

extension, 54

for complex functions, 54

for complex numbers, 54

for infinite sequences, 54

generalization, 52

Hilbert spaces, 379

Cauchy-Schwarz inequality, 48

extension, 54

for complex functions, 54

for complex numbers, 54

for infinite sequences, 54

generalization, 52

Hilbert spaces, 379

Cauchy-Schwarz inequality - for complex functions,
54
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Cauchy-Schwarz inequality - for complex numbers,
54

Cauchy-Schwarz inequality - for infinite sequences,
54

CDF, 439, 442

center

of group, 77

of ring, 108

center of ring, 108

central limit theorem, 469

centralizers

group, 77

characteristic

field, 127

ring, 126

characteristic of ring, 126

Chebyshev’s inequality, 452

random variables, 452

Chebyshev, Pafnuty

Chebyshev’s inequality

random variables, 452

Chinese remainder theorem, 130

class formula, 103

group, 103

closure

set, 24

codomain

functions, 205
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commutative group, 69

commutative monoid, 68

commutative ring, 108

commutator, 89

group, 89

commutator subgroup

group, 89

commutator subgroups, 89

compact spaces

Hausdorff spaces, 332

complement

set, 23

complementary slackness, 590

complete

Banach spaces, 270, 350

measure, 394

measure spaces, 394

metric spaces, 219, 284, 299, 301

normed spaces, 269

ordered field, 218

orthonormal system, 383

complex number, 23

compositum

field, 162

finite generation

field, 164

compositum of subfields, 162

compositums
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embedding, 168

field, 168

compositums of fields, 168

concave functions, 494

cones, 477

congruence class, 61

integers, 61

congruence with respect to normal subgroup, 78

group, 78

conic programming, 536

conjugate

group, 99

normed spaces, 358

conjugate functions, 508

conjugate of conjugate, 508

conjugates of elements of fields, 181

conjugates of fields, 181

conjugation

group, 99

conjugation of groups, 99

constant and monic polynomials, 141

constant polynomial, 141

converge in distribution, 459

convergence

in distribution, 459

in measure, 260
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in probability, 458

necessary and sufficient conditions for
convergence in distribution, 462

necessary and sufficient conditions for
convergence in probability, 461

of distributions, 458

of random series, 470

of random variables, 458–462

of set, 208

relations of, 460

weak convergence of distributions, 458

weak convergence of measures, 459

with probability 1, 458

convergence analysis of Newton’s method, 647

convergence analysis of Newton’s method for self-
concordant functions, 659

convergence conditions for random series, 470

convergence conditions for truncated random series,
470

convergence in distribution of random vector, 468

convergence in probability, 458

convergence with probability 1, 458

convergence with probability 1 for random series,
470

convergence-of-events, 428

convex

sets

segmenet, 372

convex cone, 477

convex functions, 31, 494

first order condition, 35
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vector functions, 37

second order condition, 35

vector functions, 37

strictly, 31

convex hulls, 476

convex optimization, 519

convex optimization with generalized inequality
constraints, 535

convex sets, 372, 476

closed convex hull, 378

convex hull, 378

extreme point, 377

interior point of segment, 372

internal point, 372

local convexity, 375, 376

separated convex sets, 374

support functions, 374

supporting sets, 377

convexity of level sets, 500

convexity preserving function operations, 502

convexity preserving set operations, 482

convolution product, 114

ring, 114

corollaries

existence of algebraically closed algebraic field
extensions, 170

existence of extension fields containing roots,
170

factoriality of polynomial ring, 140

finite dimension of extension, 157
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finite field extensions, 183

Galois subgroups associated with intermediate
fields - 1, 191

Galois subgroups associated with intermediate
fields - 2, 192

Galois subgroups associated with intermediate
fields - 3, 192

Galois subgroups associated with intermediate
fields - 4, 193

induction of zero function in multiple variables,
143

induction of zero function in one variable, 143

induction of zero functions in multiple variables
- finite fields, 143

induction of zero functions in multiple variables
- infinite fields, 143

isomorphism between algebraically closed
algebraic extensions, 171

isomorphism between splitting fields for family
of polynomials, 174

isomorphism induced by Chinese remainder
theorem, 130

multiplicative subgroup of finite field is cyclic,
145

necessary and sufficient condition for converging
in measure, 261

strong law of large numbers, 463

uniqueness of reduced polynomials, 144

coset

group, 74

coset representation

group, 74

cosets of groups, 74

countability

axiom of countability, 317

countability of algebraic closure of finite field, 172

Searching for Universal Truths - Index 746



Sunghee Yun August 4, 2025

countability of algebraic closure of finite fields, 172

cumulative distribution function (CDF), 439, 442

cyclic Galois extensions, 195

cyclic generator

group, 70

cyclic group

towers, 86

cyclic groups, 70

definitions

K-convex functions, 512

abelian Galois extensions, 195

affine dimension, 474

affine hulls, 474

affine sets, 474

algebraic closure, 172

algebraic extension, 156

algebraic over field, 154

algebraically closed, 146

almost everywhere - a.e., 27

alternating groups, 97

arbitrary separable field extensions, 180

canonical map of ring, 122

center of ring, 108

characteristic of ring, 126

commutative ring, 108

commutator, 89

commutator subgroups, 89

compositum of subfields, 162

concave functions, 494

cones, 477

congruence class, 61
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congruence with respect to normal subgroup, 78

conic programming, 536

conjugate functions, 508

conjugates of elements of fields, 181

conjugates of fields, 181

conjugation of groups, 99

constant and monic polynomials, 141

converge in distribution, 459

convergence in probability, 458

convergence with probability 1, 458

convex cone, 477

convex functions, 494

convex hulls, 476

convex optimization, 519

convex optimization with generalized inequality
constraints, 535

convex sets, 476

convolution product, 114

cosets of groups, 74

cyclic Galois extensions, 195

cyclic groups, 70

derivative of polynomial over commutative ring,
147

descent methods, 640

determinant maximization problems, 539

devision of entire ring elements, 133

dimension of extension, 157

direct product, 214

direct products, 70

distinguished class of field extensions, 165

division ring, 108

dual cones, 488

dual norms, 489

ellipsoids, 479
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embedding of homeomorphism, 72

embedding of ring, 125

entire ring, 120

epigraphs, 501

equivalent optimization problems, 517

equivalent towers, 93

Euclidean ball, 479

Euler phi-function, 129

Euler’s totient function, 62

evaluation homeomorphism, 137

exact sequences of homeomorphisms, 79

expected values, 451

exponent of groups and group elements, 95

extended real-value extension of convex
functions, 495

extension of field, 153

factor ring and residue class, 122

factorial ring, 132

field, 109

field embedding, 167

field embedding extension, 167

finite fields, 183

finite separable field extensions, 179

finite tower of fields, 159

fixed field, 187

Frobenius endomorphism, 149

Frobenius mapping, 184

functions, 205

Galois extensions, 188

Galois group of polynomials, 188

Galois groups, 188

Galois subgroups associated with intermediate
fields, 191

generalized inequalities, 485
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generation of field extensions, 158

generators, 70

generators of ideal, 119

geometric programming, 533

global optimality, 516

greatest common divisor, 133

group, 69

group ring, 113

half spaces, 478

homeomorphism, 71

hyperplanes, 478

hypographs, 501

ideal, 116

index and order of group, 74

induced injective ring-homeomorphism, 125

infinitely often - i.o., 27

integers modulo n, 61

irreducible polynomials, 141

irreducible ring element, 132

isotropy, 101

iterative meethods, 640

iterative meethods with search directions, 640

kernel of homeomorphism, 72

KKT optimality conditions, 591

KKT optimality conditions for generalized
inequalities, 625

Lagrange dual functions, 543

Lagrange dual functions for generalized
inequalities, 620

Lagrange dual problems, 551

Lagrange dual problems for generalized
inequalities, 621

Lagrangian, 542

Lagrangian for generalized inequalities, 619

law of composition, 68

Searching for Universal Truths - Index 750



Sunghee Yun August 4, 2025

lifting, 163

line search method, 641

line segmenets, 473

linear programming, 524

lines, 473

local optimality, 516

matrix convexity, 513

maximal ideal, 124

maximum abelian extension, 195

modulo, 61

moment generating function, 456

moments and absolute moments, 455

monoids, 68

monomial functions, 533

multiplicative group of invertible elements of
ring, 108

multiplicative subgroup of field, 145

multiplicity and multiple roots, 148

multivariate normal distributions, 466

Newton decrement, 657

norm ball, 480

norm cone, 480

normal distributions, 465

normal extensions, 175

normal subgroups, 76

normalizers and centralizers, 77

operations of group on set, 98

optimal duality gap, 561

optimization problems, 515

optimization problems with generalized inequalities,
618

orbits of operation, 102

period of group elements, 95

polyhedra, 481
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polynomial, 136

polynomial function, 137

posynomial functions, 533

prime field, 127

prime ideal, 124

prime ring, 127

primitive n-th root of unity, 145

primitive element of fields, 182

principal ideal, 116

principal ring, 117

principal two-sided ideal, 116

proper cones, 485

quadratic programming, 528

quadratically constrained quadratic programming,
530

reduced polynomials, 144

reduction map, 139

reduction of f modulo p, 139

refinement of towers, 88

relative boundaries of sets, 475

relative interiors of sets, 475

ring, 107

ring of integers modulo n, 128

ring-homeomorphism, 121

ring-isomorphism, 125

root of polynomial, 142

saddle-points, 584

second-order cone, 480

second-order cone programming, 531

self-concordance, 649

semidefinite programming, 537

separable algebraic elements, 179

separable closure, 181

separable degree of field extensions, 177
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separable polynomials, 179

separating hyperplanes, 487

simple groups, 90

solvable by radicals, 200

solvable groups, 88

sovable extensions, 200

splitting fields, 173

splitting fields for family of polynomials, 174

strong duality, 562

strong max-min property, 583

sublevel sets, 500

subring, 107

superlevel sets, 500

supporting hyperplanes, 487

sylow subgroups, 104

symmetric groups and permutations, 97

THE irreducible polynomial, 155

tower of fields, 159

towers of groups, 86

transitive operation, 102

translation, 100

unique factorization into irreducible elements,
132

variables and transcendentality, 137

weak convergence, 458

weak convergence of measures, 459

weak duality, 560

zero divisor, 120

density, 441

derivative

of polynomial, 148

polynomial, 147

derivative of polynomial, 148
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derivative of polynomial over commutative ring, 147

descent methods, 640

determinant maximization problems, 539

devision of entire ring elements, 133

difference

set, 24

dimension

algebraic extension, 157

field

algebraic extension, 157

dimension of extension, 157

dimension of finite extension, 157

direct product, 214

direct products, 70

group, 70

discrete topology, 306

distinguished class

field

extension, 165

distinguished class of field extensions, 165

distribution

probability, 439, 442

distribution functions

probability, 439, 442

division ring, 108

domain

functions, 205

Searching for Universal Truths - Index 754



Sunghee Yun August 4, 2025

dual

normed spaces, 358

dual characterization of K-convexity, 512

dual cones, 488

dual norms, 489

Dynkin’s π-λ theorem, 427

Dynkin, Eugene Borisovich

π-λ theorem, 427

Egoroff’s theorem, 245

Egoroff, Dmitri Fyodorovich

Egoroff’s theorem, 245

ellipsoids, 479

embedding

extension

field, 167

field, 167

group homeomorphism, 72

ring, 125

embedding of homeomorphism, 72

embedding of ring, 125

embeddings of compositum of fields, 168

endomorphism

group, 71

monoid, 71

entire ring, 120

integral domain, 120

epigraphs, 501
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equivalence relation, 211

equivalent optimization problems, 517

equivalent statements to weak convergence, 468

equivalent towers, 93

group, 93

Etemadi’s maximal inequality, 454

random variables, 454

Etemadi, Nasrollah

Etemadi’s maximal inequality, 454

Euclidean algorithm, 140

polynomial ring, 140

Euclidean ball, 479

Euler φ-function, 62, 129

Euler phi-function, 62, 129

Euler’s theorem, 62, 129

Euler’s theorem - number theory, 62

Euler’s totient function, 62, 129

Euler, Leonhard

φ-function, 62, 129

Euler’s theorem, 62, 129

Euler’s totient function, 62, 129

phi-function, 62, 129

evaluation homeomorphism, 137

even

finite symmetric group, 97

every field is entire ring, 120
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exact line search, 641

exact line search for infeasible Newton’s method,
679

exact sequences of homeomorphisms, 79

group, 79

existence of algebraically closed algebraic field
extensions, 170

existence of algebraically closed field extensions, 170

existence of extension fields containing roots, 170

existence of greatest common divisor of principal
entire rings, 133

existence of roots of irreducible polynomial, 169

expected values, 451

random variables, 451

exponent

group, 95

exponent of groups and group elements, 95

extended real-value extension of convex functions,
495

extension

algebraic, 156

finite, 156

field, 153

finite, 153

infinite, 153

extension of field, 153

extensions solvable by radicals, 200

factor group
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group, 76

factor ring

ring, 122

factor ring and residue class, 122

factor ring induced ring-homeomorphism, 123

factorial ring, 132

factoriality of polynomial ring, 140

Farkas’ lemma, 616

Farkas, Julius

Farkas’ lemma, 616

Fatou’s lemma

generalization, 410

integral, 404

Lebesgue integral, 253

Fatou, Pierre Joseph Louis

Fatou’s lemma, 253, 404, 410

feasible Newton’s method for equality constrained
minimization, 670

Feit, Walter

Feit-Thompson theorem, 88

Feit-Thompson theorem, 88

Fenchel’s inequality, 508

Fenchel, Moritz Werner

Fenchel’s inequality, 508

fiber

functions, 205

field, 109
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a fortiori algebraicness, 160

algebraic closedness, 146

algebraic closure, 172

algebraic embedding extension, 171

algebraic extension, 151, 152, 156

distinguished, 166

finite, 156

algebraic over field, 154

algebraically closed extension, 146

algebraicness

a fortiori, 160

finitely generated subfield by multiple
elements, 161

finitely generated subfield by single element,
160

cardinality of algebraic extension of infinite field,
172

characteristic, 127

compositum, 162

finite generation, 164

compositums, 168

countability of algebraic closure of finite field,
172

dimension

extension, 157

dimension of extension

finiteness, 157

dimension of finite extension, 157

embedding, 167

compositums, 168

extension, 167

existence of algebraically closed algebraic
extension, 170

existence of algebraically closed extensions, 170

existence of extension fields containing roots,
170
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extension, 153

algebraic, 156

algebraically closed algebraic, 170

distinguished class, 165

finite, 153, 158

finitely generated, 158

generation, 158

infinite, 153

extension of field, 153

finite extension

distinguished, 166

finite tower of fields, 159

fixed field, 187

generation of extension, 158

having characteristic p, 149, 150

isomorphic image of Q or Fp, 127

isomorphism between algebraically closed
algebraic extensions, 171

lifting, 163

multiplicative subgroup of field, 145

number of algebraic embedding extensions, 171

prime, 127, 128

splitting, 173

isomorphism, 173

THE irreducible polynomial, 155

tower of fields, 159

translation, 163

field embedding, 167

of algebraic extension, 168

field embedding extension, 167

field embedding of algebraic extension, 168

field homeomorphism, 121

injectivity, 121
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finite dimension of extension, 157

finite extension is finitely generated, 158

finite field extensions, 183

finite fields, 183

finite generation of compositum, 164

finite group, 69

finite multiplicative subgroup of field is cyclic, 145

finite separable field extensions, 179

finite sequence, 23

finite solvable groups, 88

finite tower of fields, 159

first Borel-Cantelli, 431

first-order condition for convexity, 496

fixed field, 187

fixed points

group

operation, 101

formula

class formula, 103

orbit decomposition formula, 103

Fourier coefficients

Hilbert spaces, 381

Fourier, Jean-Baptiste Joseph

Fourier coefficients, 381

Frobenius endomorphism, 149

polynomial, 149
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Frobenius mapping, 184

Frobenius, Ferdinand Georg

Frobenius endomorphism

polynomial, 149

Fubini’s theorem

product probability spaces, 436

Fubini, Guido

Fubini’s theorem

product probability spaces, 436

functions, 205, 206

bijection, 205

bijective, 205

bijective correspondece, 205

codomain, 205

domain, 205

fiber, 205

injection, 205

injective, 205

inverse image, 205

left inverse, 205

one-to-one, 205

one-to-one correspondece, 205

onto, 205

preimage, 205

range, 205

right inverse, 205

surjection, 205

surjective, 205

Fundamental theomre of cyclic groups, 9

fundamental theorem

for Galois theory, 189
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of algebra, 201

of arithmetic, 58

Fundamental theorem for Galois theory, 14

fundamental theorem for Galois theory, 189

Fundamental theorem of algebra, 6

fundamental theorem of algebra, 201

Fundamental theorem of arithmetic, 5

fundamental theorem of arithmetic, 58

Fundamental theorem of calculus, 7

Fundamental theorem of equivalence relations, 10

Fundamental theorem of finite abelian groups, 11

Fundamental theorem of finitely generated abelian
groups, 12

Fundamental theorem of ideal theory in number
fields, 16

Fundamental theorem of linear programming, 18

Fundamental theorem of symmetric polynomials, 19

Fundamental theorem on homeomorphisms, 15

Galois extension

algebraic extension, 188

Galois extensions, 188

Galois group of polynomials, 188

Galois group of polynomials and symmetric group,
188

Galois groups, 188

Galois subgroups associated with intermediate
fields, 191
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Galois subgroups associated with intermediate fields
- 1, 191

Galois subgroups associated with intermediate fields
- 2, 192, 193

Galois subgroups associated with intermediate fields
- 3, 192

Galois subgroups associated with intermediate fields
- 4, 193

Galois theory, 185, 186, 189

appreciation, 186

Galois, Évariste

Galois extension, 188

Galois group, 188

Galois theory, 189

general measure

product measure, 421

generalized inequalities, 485

generalized inequalities and dual generalized
inequalities, 491

generated by

σ-algebra

by random variables, 438

by subsets, 210

algebra, 210

product probability spaces

σ-algebra by measurable rectangles, 433

ring

ideal, 119

generation of field extensions, 158

generators, 70
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group, 70

generators of ideal, 119

of ring, 119

geometric programming, 533

geometric programming in convex form, 534

global optimality, 516

gradient descent method, 642

gradient theorem, 8

graphs and convexity, 501

greatest common divisor, 59, 133

integers, 59

principal entire ring, 133

ring, 133

group, 69

G-set, 98

p-group, 104

p-subgroup, 104

abelian, 69

action, 98

associativity, 68

automorphism, 71

butterfly lemma, 91

canonical isomorphisms, 82, 83

canonical maps, 76

center, 77

centralizers, 77

class formula, 103

commutative, 69

commutator, 89

commutator subgroup, 89
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congruence with respect to normal subgroup, 78

conjugate, 99

conjugation, 99

coset, 74

coset representation, 74

cyclic, 70

cyclic generator, 70

cyclic group, 70

direct products, 70

endomorphism, 71

equivalent towers, 93

exact sequences of homeomorphisms, 79

exponent, 95

factor group, 76

finite, 69

Galois group, 188

generators, 70

homeomorphism, 71

injective, 72

index, 74

inner, 99

isomorphism, 71

isotropy, 101

Jordan-Hölder theorem, 94

law of composition, 68

left coset, 74

monoid, 68

normal subgroup, 76

normalizers, 77

operation, 98

faithful, 101

fixed points, 101

orbits, 102
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transitive, 102

orbit decomposition formula, 103

order, 74

orthogonal subgroup, 73

period

elements, 95

permutations, 97

refinement of towers, 88

right coset, 74

Schreier theorem, 94

simple, 90

solvable group, 88

special linear group, 77

sylow subgroup, 104

symmetric, 97

alternating, 97

even, 97

odd, 97

towers, 86

abelian, 86

cyclic, 86

equivalent, 93

normal, 86

translation, 100

unit element, 68

group homeomorphism and isomorphism, 72

group of automorphisms of finite fields, 184

group of automorphisms of finite fields over another
finite field, 184

group of invertible elements

ring, 108

group of units
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ring, 108

group ring, 113

ring, 113

Hölder’s inequality, 453

complete measure spaces, 412

linear normed spaces, 268

random variables, 453

Hölder, Ludwig Otto

Hölder’s inequality, 453

complete measure spaces, 412

linear normed spaces, 268

random variables, 453

Jordan-Hölder theorem, 94

half spaces, 478

Hausdorff maximal principle, 213

Hausdorff, Felix

locally compact spaces, 324, 340, 342

maximal principle, 213

spaces, 319

Heine, Heinrich Eduard

Heine-Borel theorem, 223

Heine-Borel theorem, 223

Hilbert spaces, 379

Bessel’s inequality, 382

Cauchy-Buniakowsky-Schwarz inequality, 379

Cauchy-Schwarz inequality, 379

complete orthonormal system, 383

dimension, 384

Fourier coefficients, 381

inner product, 379, 380

isometry, 385
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isomorphism, 385

orthogonal system, 380

orthogonality, 380

orthonormal system

completeness, 383

orthonormality, 380

Schwarz inequality, 379

separable Hilbert space, 380

Hilbert, David

Hilbert spaces, 379–385

Holder’s inequality, 453

homeomorphism, 71

group, 71

embedding, 72

injective, 72

kernel, 72

monoid, 71

ring-homeomorphism, 121

sign homeomorphism

of finite symmetric group, 97

hyperplanes, 478

hypographs, 501

i.o.

infinitely often, 27

ideal, 116

of ring, 116

generators of, 119

left, 116

maximal, 124

prime, 124

right, 116
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two-sided, 116

ideals

topological spaces

σ-ideal of sets, 302

ideals of field, 116

image of ring-homeomorphism is subring, 125

independence

probability spaces, 429, 430

random variables, 444–446

infinitely many, 448

random vectors, 447

infinitely many, 448

independence-of-smallest-sig-alg, 428

index

group, 74

index and order of group, 74

indices and orders, 75

induced injective ring-homeomorphism, 125

induction of zero function in multiple variables, 143

induction of zero function in one variable, 143

induction of zero functions in multiple variables -
finite fields, 143

induction of zero functions in multiple variables -
infinite fields, 143

inequalities

AM-GM inequality, 39

Cauchy-Schwarz inequality, 48
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Cauchy-Schwarz inequality - for complex
functions, 54

Cauchy-Schwarz inequality - for complex
numbers, 54

Cauchy-Schwarz inequality - for infinite
sequences, 54

Chebyshev’s inequality, 452

Etemadi’s maximal inequality, 454

Fenchel’s inequality, 508

Holder’s inequality, 453

Jensen’s inequality, 31, 453

Jensen’s inequality - for finite sequences, 31

Jensen’s inequality - for random variables, 32

Kolmogorov’s maximal inequality, 454

Lyapunov’s inequality, 453

Markov inequality, 452

max-min inequality, 583

infeasible Newton’s method for equality constrained
minimization, 678

infinite sequence, 23

infinitely often, 27

infinitely often - i.o., 27

injection

functions, 205

injective

functions, 205

homeomorphism

group, 72

injectivity of field homeomorphism, 121

inner

group, 99
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inner product

Hilbert spaces, 379, 380

insolvability of quintic polynomials, 201

integer, 23

integers

congruence class, 61

integers mod n, 61

integers modulo n, 61

residue class under modulo, 61

integers mod n, 61

integers modulo n, 61

integers modulo n, 61

integrable, 406

Lebesgue, 255

nonnegative functions, 254

nonnegative functions, 405

integral, 406

bounded functions, 401

Fatou’s lemma, 404

generalization, 410

integrable, 406

nonnegative functions, 405

Lebesgue convergence theorem, 408

generalization, 410

monotone convergence theorem, 404

nonnegative functions, 403

integrable, 405

properties, 407

simple functions, 400

integral domain, 120
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interior

set, 24

inverse

group, 69

inverse image

functions, 205

irreducible element

ring

entire, 132

irreducible polynomial, 141

existence of roots, 169

irreducible polynomials, 141

irreducible ring element, 132

isomorphism

algebraic systems, 312

group, 71

monoid, 71

topological vector spaces, 368

vector spaces, 354

isomorphism between algebraically closed algebraic
extensions, 171

field, 171

isomorphism between splitting fields, 173

isomorphism between splitting fields for family of
polynomials, 174

isomorphism induced by Chinese remainder
theorem, 130

isomorphism of endomorphisms of cyclic groups,
131
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isotropy, 101

group, 101

iterative meethods, 640

iterative meethods with search directions, 640

Jensen’s inequality, 31, 453

for finite sequences, 31

for random variables, 32, 453

Jensen’s inequality - for finite sequences, 31

Jensen’s inequality - for random variables, 32

Jensen, Johan Ludwig William Valdemar

inequality, 31

Jensen’s inequality

for finite sequences, 31

for random variables, 32, 453

Jordan, Marie Ennemond Camile

Jordan-Hölder theorem, 94

Jordan-Hölder theorem, 94

Jordan-Holder theorem, 94

kernel

group homeomorphism, 72

ring-homeomorphism, 121

kernel of homeomorphism, 72

KKT and convexity sufficient for optimality with
strong duality, 594

KKT necessary for optimality with strong duality,
592

KKT optimality conditions, 591

Searching for Universal Truths - Index 774



Sunghee Yun August 4, 2025

KKT optimality conditions for generalized
inequalities, 625

Kolmogorov’s law

random variables, 463

Kolmogorov’s maximal inequality, 454

random variables, 454

Kolmogorov’s zero-one law, 432, 454

random variables, 454

Kolmogorov, Andrey Nikolaevich

Kolmogorov’s law, 463

Kolmogorov’s maximal inequality, 454

Kolmogorov’s zero-one law, 432, 454

Krein, Mark Grigorievich

Krein-Milman theorem, 378

Krein-Milman theorem, 378

Lévy, Paul

Lindeberg-Lévy theorem, 467

Lagrange dual functions, 543

Lagrange dual functions for generalized inequalities,
620

Lagrange dual problems, 551

Lagrange dual problems for generalized inequalities,
621

Lagrange, Joseph-Louis

Lagrange dual functions, 543

Lagrange dual functions for generalized
inequalities, 620

Lagrange dual problems, 551

Lagrange dual problems for generalized
inequalities, 621

Lagrangian, 542
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Lagrangian for generalized inequalities, 619

Lagrangian, 542

Lagrangian for generalized inequalities, 619

Lagrangian for generalized inequalities, 619

law of composition, 68

group, 68

least common multiple, 59

integers, 59

Lebesgue convergence theorem

generalization, 410

integral, 408

Lebesgue integral, 257

comments, 259

Lebesgue functions

canonical representation, 247

Lebesgue integral, 246, 255

bounded functions, 249

properties, 250

Fatou’s lemma, 253

integrable, 255

nonnegative functions, 254

Lebesgue convergence theorem, 257

monotone convergence theorem, 253

nonnegative functions, 252

integrable, 254

properties, 256

simple functions, 247

Lebesgue measurable functions, 240

characteristic functions, 243

Egoroff’s theorem, 245
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properties, 241

simple, 243

Lebesgue measure, 228, 236

countable additivity, 236

countable subadditivity, 236

measurable sets, 234

σ-algebra, 234

Borel algebra, 235

Borel sets, 235

nice ones, 237

motivation, 230

movitation

resolution, 238

outer measure, 233

Lebesgue, Henri Léon, 232

Borel-Lebesgue theorem, 296

convergence theorem, 257, 408, 410

integral, 255

measurable functions, 240

measure, 236

left coset

group, 74

left ideal

of ring, 116

left inverse

functions, 205

lemmas

a fortiori algebraicness, 160

butterfly lemma - Zassenhaus, 91

compositums of fields, 168

embeddings of compositum of fields, 168
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every field is entire ring, 120

existence of roots of irreducible polynomial, 169

field embedding of algebraic extension, 168

finite generation of compositum, 164

first Borel-Cantelli, 431

functions, 206

ideals of field, 116

image of ring-homeomorphism is subring, 125

normality of subgroups of order p, 105

number of fixed points of group operations, 104

properties of prime and maximal ideals, 124

second Borel-Cantelli, 431

lifting, 163

field, 163

limit inferior (liminf)

set, 208

limit superior (limsup)

set, 208

limit theorems

random variables, 468

limits

events, 428

limits of measurable functions, 397

Lindeberg, Jarl Waldemar

Lindeberg-Lévy theorem, 467

Lindeberg-Lévy theorem, 467

Lindeberg-Levy theorem, 467

line search method, 641
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line segmenets, 473

linear ordering, 211

linear programming, 524

lines, 473

Littlewood’s three principles, 244

second principle

complete measure spaces, 412

linear normed spaces, 271

Littlewood, John Edensor

Littlewood’s three principles, 244

local optimality, 516

local optimality implies global optimality, 520

locally compact spaces, 339

Alexandroff one-point compactification, 345

Hausdorff, Felix, 324, 340, 342

Alexandroff one-point compactification, 345

proper map, 345

local compactness, 339

local compactness and second Baire category,
343

local compactness, Hausdorffness, and
denseness, 344

Lyapunov’s inequality, 453

random variables, 453

Lyapunov, Aleksandr

Lyapunov’s inequality

random variables, 453

manifolds, 346

Hausdorff spaces, 346
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maps, 205

marginal distribution

random vectors, 443

Markov inequality, 452

random variables, 452

Markov, Andrey Andreyevich

Markov inequality

random variables, 452

matrix

positive definite, 25

positive semi-definite, 25

symmetric, 25

trace, 24

matrix convexity, 513

max-min inequality, 583

maximal ideal, 124

of ring, 124

properties, 124

maximal inequalities, 454

maximum abelian extension, 195

measurability preserving function operations, 397

measurable functions

abstract measurable spaces, 396, 425

defined by ordinate sets, 399

Lebesgue, 240

ordinate sets, 399

properties, 397

simple, 398
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measurable sets, 234, 388, 416

measurable spaces, 388

measure, 388

σ-finite, 391

complete, 394

countable additivity, 388

finite, 391

measurable spaces, 388

measure, 388

on an algebra, 417

properties of desirable, 231

semifinite, 393

sets of σ-finite measure, 392

sets of finite measure, 392

measure spaces, 388

complete, 394

completed, 394

completion, 394

examples, 389

local measurability, 395

saturatedness, 395

setwise convergence, 409

metric outer measure, 422

metric spaces

Baire category theorem, 300

Baire theorem, 300

Baire theory of category, 299

compact, 289

diagrams for relations among, 298

separable, 279, 288, 317

Milman, David Pinhusovich

Krein-Milman theorem, 378
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Minkowski inequality

linear normed spaces, 268

for 0 < p < 1, 268

Minkowski, Hermann

Minkowski inequality

linear normed spaces, 268

modulo, 61

ring of integers modulo n, 128

moment generating function, 456

moment generating functions

random variables, 456

moments

random variables, 455

moments and absolute moments, 455

monic polynomial, 141

monoid

abelian, 68

automorphism, 71

commutative, 68

endomorphism, 71

group, 68

homeomorphism, 71

isomorphism, 71

monoid-homeomorphism, 71

monoids, 68

monomial functions, 533

monotone convergence theorem

integral, 404

Lebesgue integral, 253
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multiple roots

necessary and sufficient condition for multiple
roots

polynomial, 148

polynomial, 148

multiplication

ring, 107

multiplicative axiom, 213, 214

multiplicative group of finite field, 183

multiplicative group of invertible elements of ring,
108

multiplicative subgroup of field, 145

multiplicative subgroup of finite field is cyclic, 145

multiplicativity of separable degree of field
extensions, 178

multiplicity

polynomial, 148

multiplicity and multiple roots, 148

multivariate normal distributions, 466

mylemma, 116

natural isomorphism

normed spaces, 359

natural number, 23

necessary and sufficient condition for converging in
measure, 261

necessary and sufficient condition for multiple roots,
148

necessary condition for converging in measure, 261
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Newton decrement, 644, 657

for equality constrained problem, 669

Newton’s method, 645

Newton, Isaac

Newton decrement, 644, 657

for equality constrained problem, 669

Newton’s method, 645

norm

vector, 24

norm ball, 480

norm cone, 480

normal distributions, 465

random variables, 465

normal extensions, 175

normal group

towers, 86

normal subgroup

group, 76

normal subgroups, 76

normal subgroups and factor groups, 76

normality of subgroups of order p, 105

normalizers

group, 77

normalizers and centralizers, 77

normalizers of groups, 78

normed spaces, 265

conjugate, 358
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dual, 358

linear, 265

natural isomorphism, 359

completeness, 360

number

complex number, 23

integer, 23

natural number, 23

rational number, 23

real number, 23

number of algebraic embedding extensions, 171

field, 171

number of fixed points of group operations, 104

number of roots of polynomial, 142

odd

finite symmetric group, 97

one-to-one

functions, 205

one-to-one correspondece

functions, 205

onto

functions, 205

operation

group, 98

faithful, 101

fixed points, 101

orbits, 102

transitive, 102

operations of group on set, 98
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optimal duality gap, 561

optimality certificate for self-concordant functions,
657

optimality conditions for convex optimality
problems, 520

optimization problems, 515

optimization problems with generalized inequalities,
618

orbit decomposition formula, 103

group, 103

orbits

group

operation, 102

orbits of operation, 102

order

group, 74

ordering

linear, 211

partial, 211

simple, 211

ordinate sets

measurable functions, 399

orthogonal subgroup

group, 73

orthogonal subgroups, 73

orthogonality

Hilbert spaces, 380

orthonormality
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Hilbert spaces, 380

outer measure, 233, 416

Carathéodory, 422

finite, 416

induced by measure on an algebra, 418

regular, 419

partial ordering, 211

PDF, 441

period

group

elements, 95

period of elements of finite groups, 95

period of group elements, 95

permutations

group, 97

transposition, 97

polyhedra, 481

polynomia ringl

polynomial function, 137

polynomial, 134, 136

algebraically closed, 146

constant, 141

derivative, 147, 148

Frobenius endomorphisms, 149

induction of zero function

in multiple variables, 143

induction of zero function in multiple variables,
143

finite field, 143

induction of zero function in one variable, 143
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irreducible, 141

monic, 141

multiple roots, 148

necessary and sufficient condition for multiple
roots, 148

multiplicity, 148

over arbitrary commutative ring, 135

over field field, 135

polynomial ring, 136

primitive n-th roots of unity, 145

reduced, 144

ring, 135

root, 142

root of polynomial, 142

with integer coefficients, 135

zero, 142

polynomial function, 137

polynomial ring

Euclidean algorithm, 140

evaluation homeomorphism, 137

factoriality, 140

irreducible polynomial, 141

polynomial, 136

principality, 140

reduction map, 139

reduction of f modulo p, 139

ring, 135

substitution homeomorphism, 137

transcendental, 137

variable, 137

positive definite matrix, 25

positive semi-definite matrix, 25

posynomial functions, 533
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preimage

functions, 205

primal-dual interior-point method, 702

prime

field, 128

prime element theorem, 182

prime field, 127

prime ideal, 124

of ring, 124

properties, 124

prime ring, 127

primitive n-th root of unity, 145

polynomial, 145

primitive element of fields, 182

principal entire ring is factorial, 133

principal ideal, 116

principal ring, 117

principal two-sided ideal, 116

principality of polynomial ring, 140

principle of mathematical induction, 204

principle of recursive definition, 204

principles

Hausdorff maximal principle, 213

principle of mathematical induction, 204

principle of recursive definition, 204

well ordering principle, 204
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well-ordering principle, 213

probability

Kolmogorov’s zero-one law, 432

probability (measure) spaces, 426

probability (measure) spaces, 426

probability density function (PDF), 441

probability distribution, 442

probability distribution functions, 439, 442

Probability evaluation for two independent random
vectors, 449

probability spaces, 426

independence, 429, 430

of collection of classes of events, 430

of collection of events, 429

of two events, 429

Kolmogorov’s zero-one law, 432

limits

events, 428

probability measure, 426

product spaces, 433

support, 426

tail σ-algebra, 432

tail events, 432

product measure

general measure, 421

product probability spaces, 435

product probability spaces, 433

σ-algebra generated by measurable rectangles,
433

Fubini’s theorem, 436
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measurable rectangles, 433

product measure, 435

sections of measurable functions, 434

sections of measurable subsets, 434

product topological spaces, 327

proper cones, 485

properties of cyclic groups, 96

properties of dual cones, 490

properties of prime and maximal ideals, 124

propositions

algebraic and finite extensions are distinguished,
166

algebraicness of finite field extensions, 156

algebraicness of finitely generated subfield by
single element, 160

algebraicness of finitely generated subfields by
multiple elements, 161

complementary slackness, 590

conjugate of conjugate, 508

convexity of level sets, 500

convexity preserving function operations, 502

convexity preserving set operations, 482

cosets of groups, 74

derivative of polynomial, 148

dimension of finite extension, 157

dual characterization of K-convexity, 512

existence of extension fields containing roots,
170

existence of greatest common divisor of principal
entire rings, 133

factor ring induced ring-homeomorphism, 123

finite extension is finitely generated, 158

finite solvable groups, 88
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Galois group of polynomials and symmetric
group, 188

generalized inequalities and dual generalized
inequalities, 491

geometric programming in convex form, 534

graphs and convexity, 501

group homeomorphism and isomorphism, 72

indices and orders, 75

injectivity of field homeomorphism, 121

necessary and sufficient condition for multiple
roots, 148

necessary condition for converging in measure,
261

normal subgroups and factor groups, 76

normalizers of groups, 78

number of algebraic embedding extensions, 171

orthogonal subgroups, 73

period of elements of finite groups, 95

properties of cyclic groups, 96

properties of dual cones, 490

relations of convergence of random variables,
460

self-concordance for logarithms, 649

self-concordance preserving operations, 651

separability and multiple roots, 179

sign homeomorphism of finite symmetric groups,
97

simple groups, 90

solvability of groups of order pq, 105

subgroups of cyclic groups, 95

towers inded by homeomorphism, 86

quadratic programming, 528

quadratically constrained quadratic programming,
530

random variables, 438
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σ-algebra generated by, 438

absolute moments, 455

CDF, 439

central limit theorem, 469

Chebyshev’s inequality, 452

convergence, 458

convergence in distribution, 459

convergence in probability, 458

convergence with probability 1, 458

cumulative distribution function (CDF), 439

density, 441

discrete, 439

distribution, 439

distribution functions, 439

mappings, 440

expected values, 451

Hölder’s inequality, 453

independence, 444–446

equivalent statements, 445

infinitely many, 448

Jensen’s inequality, 453

Kolmogorov’s law, 463

law, 439

limit theorems, 468

Lindeberg-Lévy theorem, 467

Lyapunov’s inequality, 453

Markov inequality, 452

moment generating functions, 456

moments, 455

multivariate normal distributions, 466

necessary and sufficient conditions for
convergences in distribution, 462

necessary and sufficient conditions for
convergences in probability, 461

normal distributions, 465
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PDF, 441

probability density function (PDF), 441

random vectors, 438

relations of convergences, 460

standard normal distribution, 465

strong law of large numbers, 463

support, 439

weak convergence of distributions, 458

weak convergence of measures, 459

weak law of large numbers, 464

random vectors, 438

CDF, 442

central limit theorem, 469

cumulative distribution function (CDF), 442

discrete, 442

distribution, 442

distribution functions, 442

independence, 447

equivalent statements, 447

infinitely many, 448

law, 442

marginal distribution, 443

range

functions, 205

rank-nullity theorem, 17

rational number, 23

real number, 23

reduced polynomial

uniqueness, 144

reduced polynomials, 144

reduction map, 139
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polynomial ring, 139

reduction of f modulo p, 139

ring, 139

reduction of f modulo p, 139

refinement of towers, 88

group, 88

relation

be relation on, 211

stand in relation, 211

relations of convergence of random variables, 460

relative boundaries of sets, 475

relative interior

set, 24

relative interiors of sets, 475

residue class

ring, 122

residue class under modulo, 61

integers, 61

retention of normality of extensions, 176

Riemann integral, 229

Riemann, Bernhard

Riemann integral, 229

Riesz representation theorem, 273, 413

complete measure spaces, 413

linear normed spaces, 273

Riesz, Frigyes

Riesz representation theorem, 273, 413

complete measure spaces, 413
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linear normed spaces, 273

right coset

group, 74

right ideal

of ring, 116

right inverse

functions, 205

ring, 107

addition, 107

canonical map, 122

center of, 108

characteristic, 126

Chinese remainder theorem, 130

isomorphism induced by, 130

commutative, 108

convolution product, 114

devision of elements, 133

division ring, 108

embedding, 125

entire, 120

devision of elements, 133

factorial, 132

irreducible element, 132

unique factorization, 132

factor ring, 122

factor ring induced ring-homeomorphism, 123

factorial, 132

generated by ideal, 119

generators of ideal, 119

greatest common divisor, 133

greatest common divisor of principal entire ring,
133
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group of invertible elements, 108

group of units, 108

group ring, 113

ideal, 116

left ideal, 116

maximal, 124

prime, 124

right ideal, 116

two-sided ideal, 116

induced injective ring-homeomorphism, 125

integer, 128

isomorphism induced by Chinese remainder
theorem, 130

isomorphism of endomorphisms of cyclic groups,
131

maximal ideal, 124

properties, 124

multiplication, 107

multiplicative group of invertible elements of
ring, 108

of integers modulo n, 128

prime, 128

of polynomial differential operators, 135

polynomial, 135, 136

polynomial ring, 135

prime, 127

prime ideal, 124

properties, 124

principal, 117

principal ideal, 116

principal two-sided ideal, 116

reduction map, 139

residue class, 122

ring-homeomorphism, 121

kernel, 121
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subring, 107

units, 108

zero divisor, 120

ring homeomorphism

field homeomorphism, 121

ring of integers modulo n, 128

ring-homeomorphism, 121

kernel, 121

ring-isomorphism, 125

root

polynomial, 142

root of polynomial, 142

saddle-points, 584

Schreier theorem, 94

group, 94

Schreier, Otto

Schreier theorem, 94

Schwarz, Hermann

Cauchy-Buniakowsky-Schwarz inequality

Hilbert spaces, 379

Cauchy-Schwarz inequality, 48

extension, 54

for complex functions, 54

for complex numbers, 54

for infinite sequences, 54

generalization, 52

Hilbert spaces, 379

Schwarz inequality

Hilbert spaces, 379
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second Borel-Cantelli, 431

second-order condition for convexity, 497

second-order cone, 480

second-order cone programming, 531

self-concordance, 649

self-concordance for logarithms, 649

self-concordance preserving operations, 651

semidefinite programming, 537

separability and multiple roots, 179

separable

metric spaces, 279, 288, 317

separable algebraic elements, 179

separable closure, 181

separable degree of field extensions, 177

separable extensions are distinguished, 180

separable field extensions, 180

separable polynomials, 179

separated by function, 422

separating hyperplane theorem, 487

separating hyperplanes, 487

sequence, 23

finite sequence, 23

infinite sequence, 23

set

boundary, 24
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closure, 24

complement, 23

convergence of sequence, 208

difference, 24

interior, 24

limit inferior (liminf), 208

limit superior (limsup), 208

relative interior, 24

sign homeomorphism

of finite symmetric group, 97

sign homeomorphism of finite symmetric groups, 97

simple groups, 90

simple ordering, 211

simplicity of alternating groups, 97

Slater’s theorem, 563

Slater’s theorem for generalized inequalities, 622

smallest σ-algebra containing subsets, 24, 210

smallest algebra containing subsets, 210

solvability condition in terms of normal subgroups,
88

solvability of finite p-groups, 105

solvability of finite symmetric groups, 97

solvability of groups of order pq, 105

solvable by radicals, 200

solvable extensions are distinguished, 200

solvable group
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group, 88

solvable groups, 88

sovable extensions, 200

special linear group

group, 77

splitting field, 173

isomorphism, 173

splitting fields, 173

splitting fields for family of polynomials, 174

squence of random variables, 450

standard normal distribution, 465

strong alternatives for generalized inequalities, 630

strong alternatives of two systems, 612

strong alternatives of two systems with strict
inequalities, 613

strong duality, 562

strong law of large numbers, 463

random variables, 463

strong max-min property, 583

subgroup, 69

group, 69

trivial, 69

subgroups of cyclic groups, 95

sublevel sets, 500

submonoid, 68
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monoid, 68

subring, 107

ring, 107

superlevel sets, 500

supporting hyperplane theorem, 487

supporting hyperplanes, 487

surjection

functions, 205

surjective

functions, 205

sylow subgroup

group, 104

sylow subgroups, 104

symmetric group

group, 97

transposition, 97

symmetric groups and permutations, 97

symmetric matrix, 25

tail σ-algebra, 432

tail events, 432

THE irreducible polynomial, 155

theorem of alternative for linear strict generalized
inequalities, 492

theorems

p-Sylow subgroups of finite groups, 104

algebraic embedding extensions, 171

Artin’s theorem, 193
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cardinality of algebraic extensions of infinite
fields, 172

central limit theorem, 469

Chinese remainder theorem, 130

convergence analysis of Newton’s method, 647

convergence analysis of Newton’s method for
self-concordant functions, 659

convergence conditions for random series, 470

convergence conditions for truncated random
series, 470

convergence in distribution of random vector,
468

convergence with probability 1 for random series,
470

convergence-of-events, 428

countability of algebraic closure of finite fields,
172

equivalent statements to weak convergence, 468

Euclidean algorithm, 140

Euler’s theorem, 129

Euler’s theorem - number theory, 62

existence of algebraically closed field extensions,
170

extensions solvable by radicals, 200

Farkas’ lemma, 616

Feit-Thompson theorem, 88

finite fields, 183

finite multiplicative subgroup of field is cyclic,
145

finite separable field extensions, 179

first-order condition for convexity, 496

Fundamental theomre of cyclic groups, 9

Fundamental theorem for Galois theory, 14

fundamental theorem for Galois theory, 189

Fundamental theorem of algebra, 6

fundamental theorem of algebra, 201
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Fundamental theorem of arithmetic, 5

fundamental theorem of arithmetic, 58

Fundamental theorem of calculus, 7

Fundamental theorem of equivalence relations,
10

Fundamental theorem of finite abelian groups,
11

Fundamental theorem of finitely generated
abelian groups, 12

Fundamental theorem of ideal theory in number
fields, 16

Fundamental theorem of linear programming, 18

Fundamental theorem of symmetric polynomials,
19

Fundamental theorem on homeomorphisms, 15

Galois subgroups associated with intermediate
fields - 1, 191

Galois subgroups associated with intermediate
fields - 2, 193

gradient theorem, 8

group of automorphisms of finite fields, 184

group of automorphisms of finite fields over
another finite field, 184

independence-of-smallest-sig-alg, 428

insolvability of quintic polynomials, 201

isomorphism between splitting fields, 173

isomorphism of endomorphisms of cyclic groups,
131

Jordan-Holder theorem, 94

KKT and convexity sufficient for optimality with
strong duality, 594

KKT necessary for optimality with strong duality,
592

Kolmogorov’s zero-one law, 454

limits of measurable functions, 397

Lindeberg-Levy theorem, 467

local optimality implies global optimality, 520
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measurability preserving function operations,
397

multiplicative group of finite field, 183

multiplicativity of separable degree of field
extensions, 178

normal extensions, 175

number of roots of polynomial, 142

optimality certificate for self-concordant
functions, 657

optimality conditions for convex optimality
problems, 520

prime element theorem, 182

principal entire ring is factorial, 133

principality of polynomial ring, 140

Probability evaluation for two independent
random vectors, 449

rank-nullity theorem, 17

retention of normality of extensions, 176

Schreier theorem, 94

second-order condition for convexity, 497

separable extensions are distinguished, 180

separable field extensions, 180

separating hyperplane theorem, 487

simplicity of alternating groups, 97

Slater’s theorem, 563

Slater’s theorem for generalized inequalities, 622

solvability condition in terms of normal
subgroups, 88

solvability of finite p-groups, 105

solvability of finite symmetric groups, 97

solvable extensions are distinguished, 200

squence of random variables, 450

strong alternatives for generalized inequalities,
630

strong alternatives of two systems, 612
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strong alternatives of two systems with strict
inequalities, 613

strong law of large numbers, 463

supporting hyperplane theorem, 487

theorem of alternative for linear strict generalized
inequalities, 492

upper limit on separable degree of field
extensions, 178

weak alternatives for generalized inequalities,
629

weak alternatives of two systems, 609

weak alternatives of two systems with strict
inequalities, 611

weak law of large numbers, 464

Thompson, John Griggs

Feit-Thompson theorem, 88

topological spaces, 304–306

σ-ideal of sets, 302

base, 314

diagrams for relations among, 336

diagrams for separation axioms for, 323

discrete topology, 306

Hausdorff spaces, 319

locally compact Hausdorff spaces, 324

locally compact spaces, 339

metrizable, 328

motivation, 305

neighborhood, 314

normal spaces, 319

product

countable, 328

product topology, 327

projection, 327

products of compact spaces, 338
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proper mapping, 345

regular spaces, 319

separation axioms, 319

subordinateness, 341

support, 341

topology, 306

trivial topology, 306

Tychonoff spaces, 319

Tychonoff theorem, 338

topological vector spaces, 365

isomorphism, 368

strongly and weakly open and closed sets, 370

sufficient and necessarily condition, 367

weak topologies, 369

weak∗ topologies, 371

topology, 306

discrete topology, 306

trivial topology, 306

tower of fields, 159

towers

abelian, 86

cyclic, 86

equivalent, 93

group, 86

inded by homeomorphism, 86

normal, 86

refinement, 88

towers inded by homeomorphism, 86

towers of groups, 86

trace

matrix, 24
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transitive

group

operation, 102

transitive operation, 102

translation, 100

field, 163

group, 100

transpositions

permutations, 97

symmetric group, 97

trivial subgroup, 69

trivial topology, 306

two-sided ideal

of ring, 116

Tychonoff, Andrey Nikolayevich

Tychonoff spaces, 319

Tychonoff theorem, 338

unique factorization

ring

entire, 132

unique factorization into irreducible elements, 132

uniqueness of reduced polynomials, 144

unit element

group, 68

units

ring, 108

upper limit on separable degree of field extensions,
178
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variables and transcendentality, 137

vector

norm, 24

vector space

as field extension, 153

vector spaces, 349

isomorphism, 354

weak alternatives for generalized inequalities, 629

weak alternatives of two systems, 609

weak alternatives of two systems with strict
inequalities, 611

weak convergence, 458

weak convergence of measures, 459

weak duality, 560

weak law of large numbers, 464

random variables, 464

well ordering principle, 204

well-ordering principle, 213

Zassenhaus, Hans

butterfly lemma, 91

zero

polynomial, 142

zero divisor, 120

ring, 120

ZZ-figures

butterfly lemma, 92

commutative diagram, 84
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commutative diagram for canonical homeomorphism,
85

commutative diagram for canonical isomorphism,
83

commutative diagram for canonical map, 80

diagram for Galois lifting, 196

diagram for Galois two-side lifting, 198

diagrams for containment of convex optimization
problems, 540

diagrams for Galois main result, 190

diagrams for relations among metric spaces, 298

diagrams for relations among topological spaces,
336

diagrams for relations among various spaces, 263

diagrams for separation axioms for topological
spaces, 323

dual cone, 488

embedding extension, 167

factor-ring-induced-ring-homeomorphism, 123

geometric interpretation of duality - 1, 575

geometric interpretation of duality - 2, 576

geometric interpretation of duality - 3, 578

geometric interpretation of duality - 4, 581

lattice diagram of fields, 165

lifting or smallest fields, 164

sensitivity analysis of optimal value, 597

translation or lifting of fields, 163

ZZ-important

Nω = NN is topology space homeomorphic to
R ∼ Q, 328

(Lebesgue) measurable sets are nice ones, 237

for field k and its algebraic extension E,
embedding of E into itself over k is
isomorphism, 168
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algebraically closed algebraic extension is
determined up to isomorphism, 171

collection of measurable sets is σ-algebra, 234

every normed vector space is isometrically
isomorphic to dense subset of Banach spaces,
360

group having an abelian tower whose last
element is trivial subgroup, said to be
solvable, 88

open set in R is union of countable collection of
disjoint open intervals, 222

Riesz representation theorem, 273

space of all bounded linear operators from
normed vector space to Banach space is
Banach space, 355

Tychonoff - finite-dimensional Hausdorff
topological vector space is topologically
isomorphic to Rn for some n, 368

Tychonoff theorem - (probably) most important
theorem in general topology, 338

ZZ-revisit

every outer measure induced by measure on an
algebra is regular outer measure, 419

topological space is locally compact if and only
if set of all open sets with compact closures
forms base for the topological space, 339

ZZ-todo

0 - apply new comma conventions, 0

1 - convert bullet points to proper theorem,
definition, lemma, corollary, proposition, etc.,
0

5 - counter-example for convergence in measure,
260

CANCELED - < 2024 0421 - python script
extracting important list, 0

CANCELED - 2024 0324 - references to
slides dealing with additional locally compact
Hausdorff space properties, 340

CANCELED - 2025 0414 - 2 - diagram for
convergence of random series, 470
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DONE - 2024 0324 - change tocpageref and
funpageref to hyperlink, 0

DONE - 2024 0324 - python script extracting
figure list → using “list of figures”
functionality on doc, 0

DONE - 2024 0324 - python script extracting
theorem-like list → using “list of theorem”
functionality on doc, 0

DONE - 2024 0324 - python script for converting
slides to doc, 0

DONE - 2025 0414 - 1 - change mathematicians’
names, 0
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